Flattening Clothes with a Single-Arm Robot Based on Reinforcement Learning | SpringerLink
Skip to main content

Flattening Clothes with a Single-Arm Robot Based on Reinforcement Learning

  • Conference paper
  • First Online:
Intelligent Autonomous Systems 17 (IAS 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 577))

Included in the following conference series:

Abstract

Using reinforcement learning has enabled robots to learn how to accomplish a wide range of tasks without explicit instructions. In this paper, we use a single-arm robot for the flattening of a piece of cloth which is crumpled and placed on a table. We create a simulation environment with a gripper and a piece of cloth to learn a policy for the robot to choose the best action based on the observation of the environment. The policy is then transferred to a real robot and successfully tested. We also introduce our method on the recognition of the corners of the cloth using computer vision which includes comparing classic computer vision approach to a deep learning one. We use an ABB robot and a 2D camera for the experiments and PyBullet software for the simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 34319
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 42899
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Polydoros, A.S., Nalpantidis, L.: Survey of model-based reinforcement learning: applications on robotics. J. Intel. Robot. Syst. 86(2), 153173 (2017)

    Article  Google Scholar 

  2. Mariolis, I., Peleka, G., Kargakos, A., Malassiotis, S.: Pose and category recognition of highly deformable objects using deep learning. In: IEEE International Conference on Advanced Robotics (ICAR), pp. 655–662 (2015)

    Google Scholar 

  3. Yuan, W., Mo, Y., Wang, S., Adelson, E.H.: Active clothing material perception using tactile sensing and deep learning. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4842–4849 (2018)

    Google Scholar 

  4. Saxena, K., Shibata, T.: Garment recognition and grasping point detection for clothing assistance task using deep learning. IEEE/SICE International Symposium on System Integration (SII), pp. 632–637 (2019)

    Google Scholar 

  5. Doumanoglou, A., Stria, J., Peleka, G., Mariolis, I., Petrik, V., Kargakos, A., Wagner, L., Hlavac, V., Kim, T.K., Malassiotis, S.: Folding clothes autonomously: a complete pipeline. IEEE Trans. Robot. 32(6), 1461–1478 (2016)

    Article  Google Scholar 

  6. Yamazaki, K., Oya, R., Nagahama, K., Okada, K., Inaba, M.: Bottom dressing by a life-sized humanoid robot provided failure detection and recovery functions. In: 2014 IEEE/SICE International Symposium on System Integration. SII, vol. 2014, pp. 564–570 (2014)

    Google Scholar 

  7. Yamazaki, K., Ueda, R., Nozawa, S., Mori, Y., Maki, T., Hatao, N., Okada, K., Inaba, M.: System integration of a daily assistive robot and its application to tidying and cleaning rooms. In: IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010–Conference Proceedings, pp. 1365–1371 (2010)

    Google Scholar 

  8. Stria, J., Prusa, D., Hlavac, V., Wagner, L., Petrik, V., Krsek, P., Smutny, V.: Garment perception and its folding using a dual-arm robot. In: IEEE International Conference on Intelligent Robots and Systems, pp. 61–67 (2014)

    Google Scholar 

  9. Petrík, V., Smutný, V., Krsek, P., Hlaváč, V.: Single arm robotic garment folding path generation. Adv. Robot. 31(23–24), 1325–1337 (2017)

    Article  Google Scholar 

  10. Yamazaki, K., Nagahama, K., Inaba, M.: Daily clothes observation from visible surfaces based on wrinkle and cloth-overlap detection. In: Proceedings of the 12th IAPR Conference on Machine Vision Applications, MVA 2011, pp. 275–278 (2011)

    Google Scholar 

  11. Sun, L., Aragon-camarasa, G., Rogers, S., Siebert, J.P.: Autonomous clothes manipulation using a hierarchical vision architecture. IEEE Access 6, 76646–76662 (2018)

    Article  Google Scholar 

  12. Clegg, A., Yu, W., Erickson, Z., Tan, J., Liu, C., Turk, G.: Learning to navigate cloth using haptics. In: IEEE International Conference on Intelligent Robots and Systems, pp. 2799–2805. Institute of Electrical and Electronics Engineers Inc. (2017)

    Google Scholar 

  13. Yuan, W., Mo, Y., Wang, S., Adelson, E.H.: Active clothing material perception using tactile sensing and deep learning. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4842–4849. IEEE (2018)

    Google Scholar 

  14. Borrás, J., Alenyá, G., Torras, C.: A grasping-centered analysis for cloth manipulation. IEEE Trans. Robot. 36(3), 924–936 (2020)

    Article  Google Scholar 

  15. Lakshmanan, K., Sachdev, A., Xie, Z., Berenson, D., Goldberg, K., Abbeel, P.: Constraint-Aware Motion Planning Algorithm A, for Robotic Folding of Clothes, Experimental Robotics. Springer Tracts in Advanced Robotics, vol. 88. Springer, Heidelberg (2013)

    Google Scholar 

  16. Willimon, B., Birchfield, S., Walker, I.: Model for Unfolding Laundry Using Interactive Perception pp. 4871–4876. IROS (2011)

    Google Scholar 

  17. Sun, L., Aragon-Camarasa, G., Cocshott, P., Rogers, S., Siebert, J.P.: A Heuristic-Based Approach for Flattening Wrinkled Clothes. TAROS (2013)

    Google Scholar 

  18. Sun, L., Aragon-Camarasa, G., Rogers, S., Siebert, J.P.: Accurate garment surface analysis using an active stereo robot head with application to dual- arm flattening. Robot. Autom. (ICRA) 185–192 (2015)

    Google Scholar 

  19. Sun, L., Camarasa, G.A., Khan, A., Rogers, S., Siebert, P.: A precise method for cloth configuration parsing applied to single-arm flattening. Int. J. Adv. Robot. Syst. 13(2) (2016)

    Google Scholar 

  20. Jia, B., Pan, Z., Hu, Z., Pan, J., Manocha, D.: Cloth manipulation using random-forest-based imitation learning. IEEE Robot. Autom. Lett. 4(2), 2086–93 (2019)

    Article  Google Scholar 

  21. Tamei, T., Matsubara, T., Rai, A., Shibata, T.: Reinforcement learning of clothing assistance with a dual-arm robot. In: IEEE-RAS International Conference on Humanoid Robots, pp. 733–738 (2011)

    Google Scholar 

  22. Matsubara, T.: Reinforcement learning of motor skills with non-rigid materials using topology coordinates. Adv. Robot. 27(7), 513–524 (2013)

    Article  Google Scholar 

  23. Koganti, N., Tamei, T., Matsubara, T., Shibata, T.: Real-time estimation of human-cloth topological relationship using depth sensor for robotic clothing assistance. In: IEEE International Workshop on Robot and Human Interactive Communication, pp. 124–129 (2014)

    Google Scholar 

  24. Matas, J., James, S., Davison, A.J.: Sim-to-real reinforcement learning for deformable object manipulation. In: 2nd Conference on Robot Learning (CoRL 2018) (2018)

    Google Scholar 

  25. Wu, Y., Yan, W., Kurutach, T., Pinto, L., Abbeel, P.: Learning to Manipulate Deformable Objects without Demon-Strations (2019). ArXiv:1910.13439

  26. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.: Continuous control with deep reinforcement learning. In: CoRR (2015)

    Google Scholar 

  27. Silver, D. et al.: Deterministic policy gradient algorithms. In: International Conference on Machine Learning (2014)

    Google Scholar 

  28. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference (1988)

    Google Scholar 

  29. Věcerík, M., Hester, T., Scholz, J., Wang, F., Pietquin, O., Piot, B., Heess, N., Rothörl, T., Lampe, T., Riedmiller, M.: Leveraging demonstrations for deep reinforcement learning on robotics problems with sparse rewards. In: CoRR (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Shehawy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shehawy, H., Pareyson, D., Caruso, V., Zanchettin, A.M., Rocco, P. (2023). Flattening Clothes with a Single-Arm Robot Based on Reinforcement Learning. In: Petrovic, I., Menegatti, E., Marković, I. (eds) Intelligent Autonomous Systems 17. IAS 2022. Lecture Notes in Networks and Systems, vol 577. Springer, Cham. https://doi.org/10.1007/978-3-031-22216-0_39

Download citation

Publish with us

Policies and ethics