Abstract
Using reinforcement learning has enabled robots to learn how to accomplish a wide range of tasks without explicit instructions. In this paper, we use a single-arm robot for the flattening of a piece of cloth which is crumpled and placed on a table. We create a simulation environment with a gripper and a piece of cloth to learn a policy for the robot to choose the best action based on the observation of the environment. The policy is then transferred to a real robot and successfully tested. We also introduce our method on the recognition of the corners of the cloth using computer vision which includes comparing classic computer vision approach to a deep learning one. We use an ABB robot and a 2D camera for the experiments and PyBullet software for the simulation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Polydoros, A.S., Nalpantidis, L.: Survey of model-based reinforcement learning: applications on robotics. J. Intel. Robot. Syst. 86(2), 153173 (2017)
Mariolis, I., Peleka, G., Kargakos, A., Malassiotis, S.: Pose and category recognition of highly deformable objects using deep learning. In: IEEE International Conference on Advanced Robotics (ICAR), pp. 655–662 (2015)
Yuan, W., Mo, Y., Wang, S., Adelson, E.H.: Active clothing material perception using tactile sensing and deep learning. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4842–4849 (2018)
Saxena, K., Shibata, T.: Garment recognition and grasping point detection for clothing assistance task using deep learning. IEEE/SICE International Symposium on System Integration (SII), pp. 632–637 (2019)
Doumanoglou, A., Stria, J., Peleka, G., Mariolis, I., Petrik, V., Kargakos, A., Wagner, L., Hlavac, V., Kim, T.K., Malassiotis, S.: Folding clothes autonomously: a complete pipeline. IEEE Trans. Robot. 32(6), 1461–1478 (2016)
Yamazaki, K., Oya, R., Nagahama, K., Okada, K., Inaba, M.: Bottom dressing by a life-sized humanoid robot provided failure detection and recovery functions. In: 2014 IEEE/SICE International Symposium on System Integration. SII, vol. 2014, pp. 564–570 (2014)
Yamazaki, K., Ueda, R., Nozawa, S., Mori, Y., Maki, T., Hatao, N., Okada, K., Inaba, M.: System integration of a daily assistive robot and its application to tidying and cleaning rooms. In: IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010–Conference Proceedings, pp. 1365–1371 (2010)
Stria, J., Prusa, D., Hlavac, V., Wagner, L., Petrik, V., Krsek, P., Smutny, V.: Garment perception and its folding using a dual-arm robot. In: IEEE International Conference on Intelligent Robots and Systems, pp. 61–67 (2014)
Petrík, V., Smutný, V., Krsek, P., Hlaváč, V.: Single arm robotic garment folding path generation. Adv. Robot. 31(23–24), 1325–1337 (2017)
Yamazaki, K., Nagahama, K., Inaba, M.: Daily clothes observation from visible surfaces based on wrinkle and cloth-overlap detection. In: Proceedings of the 12th IAPR Conference on Machine Vision Applications, MVA 2011, pp. 275–278 (2011)
Sun, L., Aragon-camarasa, G., Rogers, S., Siebert, J.P.: Autonomous clothes manipulation using a hierarchical vision architecture. IEEE Access 6, 76646–76662 (2018)
Clegg, A., Yu, W., Erickson, Z., Tan, J., Liu, C., Turk, G.: Learning to navigate cloth using haptics. In: IEEE International Conference on Intelligent Robots and Systems, pp. 2799–2805. Institute of Electrical and Electronics Engineers Inc. (2017)
Yuan, W., Mo, Y., Wang, S., Adelson, E.H.: Active clothing material perception using tactile sensing and deep learning. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4842–4849. IEEE (2018)
Borrás, J., Alenyá, G., Torras, C.: A grasping-centered analysis for cloth manipulation. IEEE Trans. Robot. 36(3), 924–936 (2020)
Lakshmanan, K., Sachdev, A., Xie, Z., Berenson, D., Goldberg, K., Abbeel, P.: Constraint-Aware Motion Planning Algorithm A, for Robotic Folding of Clothes, Experimental Robotics. Springer Tracts in Advanced Robotics, vol. 88. Springer, Heidelberg (2013)
Willimon, B., Birchfield, S., Walker, I.: Model for Unfolding Laundry Using Interactive Perception pp. 4871–4876. IROS (2011)
Sun, L., Aragon-Camarasa, G., Cocshott, P., Rogers, S., Siebert, J.P.: A Heuristic-Based Approach for Flattening Wrinkled Clothes. TAROS (2013)
Sun, L., Aragon-Camarasa, G., Rogers, S., Siebert, J.P.: Accurate garment surface analysis using an active stereo robot head with application to dual- arm flattening. Robot. Autom. (ICRA) 185–192 (2015)
Sun, L., Camarasa, G.A., Khan, A., Rogers, S., Siebert, P.: A precise method for cloth configuration parsing applied to single-arm flattening. Int. J. Adv. Robot. Syst. 13(2) (2016)
Jia, B., Pan, Z., Hu, Z., Pan, J., Manocha, D.: Cloth manipulation using random-forest-based imitation learning. IEEE Robot. Autom. Lett. 4(2), 2086–93 (2019)
Tamei, T., Matsubara, T., Rai, A., Shibata, T.: Reinforcement learning of clothing assistance with a dual-arm robot. In: IEEE-RAS International Conference on Humanoid Robots, pp. 733–738 (2011)
Matsubara, T.: Reinforcement learning of motor skills with non-rigid materials using topology coordinates. Adv. Robot. 27(7), 513–524 (2013)
Koganti, N., Tamei, T., Matsubara, T., Shibata, T.: Real-time estimation of human-cloth topological relationship using depth sensor for robotic clothing assistance. In: IEEE International Workshop on Robot and Human Interactive Communication, pp. 124–129 (2014)
Matas, J., James, S., Davison, A.J.: Sim-to-real reinforcement learning for deformable object manipulation. In: 2nd Conference on Robot Learning (CoRL 2018) (2018)
Wu, Y., Yan, W., Kurutach, T., Pinto, L., Abbeel, P.: Learning to Manipulate Deformable Objects without Demon-Strations (2019). ArXiv:1910.13439
Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.: Continuous control with deep reinforcement learning. In: CoRR (2015)
Silver, D. et al.: Deterministic policy gradient algorithms. In: International Conference on Machine Learning (2014)
Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference (1988)
Věcerík, M., Hester, T., Scholz, J., Wang, F., Pietquin, O., Piot, B., Heess, N., Rothörl, T., Lampe, T., Riedmiller, M.: Leveraging demonstrations for deep reinforcement learning on robotics problems with sparse rewards. In: CoRR (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Shehawy, H., Pareyson, D., Caruso, V., Zanchettin, A.M., Rocco, P. (2023). Flattening Clothes with a Single-Arm Robot Based on Reinforcement Learning. In: Petrovic, I., Menegatti, E., Marković, I. (eds) Intelligent Autonomous Systems 17. IAS 2022. Lecture Notes in Networks and Systems, vol 577. Springer, Cham. https://doi.org/10.1007/978-3-031-22216-0_39
Download citation
DOI: https://doi.org/10.1007/978-3-031-22216-0_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22215-3
Online ISBN: 978-3-031-22216-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)