On the Evaluation of RGB-D-Based Categorical Pose and Shape Estimation | SpringerLink
Skip to main content

On the Evaluation of RGB-D-Based Categorical Pose and Shape Estimation

  • Conference paper
  • First Online:
Intelligent Autonomous Systems 17 (IAS 2022)

Abstract

Recently, various methods for 6D pose and shape estimation of objects have been proposed. Typically, these methods evaluate their pose estimation in terms of average precision and reconstruction quality in terms of chamfer distance. In this work, we take a critical look at this predominant evaluation protocol, including metrics and datasets. We propose a new set of metrics, contribute new annotations for the Redwood dataset, and evaluate state-of-the-art methods in a fair comparison. We find that existing methods do not generalize well to unconstrained orientations and are actually heavily biased towards objects being upright. We provide an easy-to-use evaluation toolbox with well-defined metrics, method, and dataset interfaces, which allows evaluation and comparison with various state-of-the-art approaches (https://github.com/roym899/pose_and_shape_evaluation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 34319
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 42899
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Intel Core i7-6850K CPU, NVIDIA TITAN X (Pascal) GPU.

References

  1. Ahmadyan, A., Zhang, L., Ablavatski, A., Wei, J., Grundmann, M.: Objectron: A large scale dataset of object-centric videos in the wild with pose annotations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 7822–7831 (2021)

    Google Scholar 

  2. Akizuki, S., Hashimoto, M.: ASM-Net: Category-level pose and shape estimation using parametric deformation. In: Proceedings of the British Machine Vision Conference (2021)

    Google Scholar 

  3. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., Yu, F.: ShapeNet: An information-rich 3D model repository. Tech. Rep. 1512.03012, arXiv preprint (Dec 2015)

    Google Scholar 

  4. Chen, D., Li, J., Wang, Z., Xu, K.: Learning canonical shape space for category-level 6D object pose and size estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11973–11982 (2020)

    Google Scholar 

  5. Chen, K., Dou, Q.: SGPA: Structure-guided prior adaptation for category-level 6D object pose estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2773–2782 (2021)

    Google Scholar 

  6. Chen, W., Jia, X., Chang, H.J., Duan, J., Shen, L., Leonardis, A.: FS-Net: Fast shape-based network for category-level 6D object pose estimation with decoupled rotation mechanism. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1581–1590 (2021)

    Google Scholar 

  7. Chen, X., Dong, Z., Song, J., Geiger, A., Hilliges, O.: Category level object pose estimation via neural analysis-by-synthesis. In: European Conference on Computer Vision, pp. 139–156. Springer, Berlin (2020)

    Google Scholar 

  8. Choi, S., Zhou, Q.Y., Miller, S., Koltun, V.: A large dataset of object scans. arXiv preprint arXiv:1602.02481 (2016)

  9. Deng, H., Bui, M., Navab, N., Guibas, L., Ilic, S., Birdal, T.: Deep Bingham networks: Dealing with uncertainty and ambiguity in pose estimation. arXiv preprint arXiv:2012.11002 (2020)

  10. Engelmann, F., Rematas, K., Leibe, B., Ferrari, V.: From points to multi-object 3D reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4588–4597 (2021)

    Google Scholar 

  11. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The PASCAL visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  12. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 605–613 (2017)

    Google Scholar 

  13. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  14. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  15. Hodaň, T., Sundermeyer, M., Drost, B., Labbé, Y., Brachmann, E., Michel, F., Rother, C., Matas, J.: BOP challenge 2020 on 6D object localization. In: European Conference on Computer Vision, pp. 577–594. Springer (2020)

    Google Scholar 

  16. Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: benchmarking large-scale scene reconstruction. ACM Trans. Graph. 36(4) (2017)

    Google Scholar 

  17. Lee, T., Lee, B.U., Kim, M., Kweon, I.S.: Category-level metric scale object shape and pose estimation. IEEE Robot. Autom. Lett. 6(4), 8575–8582 (2021)

    Article  Google Scholar 

  18. Lin, J., Wei, Z., Li, Z., Xu, S., Jia, K., Li, Y.: DualPoseNet: Category-level 6D object pose and size estimation using dual pose network with refined learning of pose consistency. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3560–3569 (2021)

    Google Scholar 

  19. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: Common objects in context. In: Proceedings of the European Conference on Computer Vision, pp. 740–755 (2014)

    Google Scholar 

  20. Manhardt, F., Arroyo, D.M., Rupprecht, C., Busam, B., Birdal, T., Navab, N., Tombari, F.: Explaining the ambiguity of object detection and 6D pose from visual data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6841–6850 (2019)

    Google Scholar 

  21. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: PyTorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32, 8026–8037 (2019)

    Google Scholar 

  22. Salton, G., McGill, M.J.: Introduction to modern information retrieval. McGraw Hill (1983)

    Google Scholar 

  23. Tatarchenko, M., Richter, S.R., Ranftl, R., Li, Z., Koltun, V., Brox, T.: What do single-view 3D reconstruction networks learn? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3405–3414 (2019)

    Google Scholar 

  24. Tian, M., Ang, M.H., Lee, G.H.: Shape prior deformation for categorical 6D object pose and size estimation. In: European Conference on Computer Vision, pp. 530–546. Springer, Berlin (2020)

    Google Scholar 

  25. Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(04), 376–380 (1991)

    Article  Google Scholar 

  26. Wang, H., Sridhar, S., Huang, J., Valentin, J., Song, S., Guibas, L.J.: Normalized object coordinate space for category-level 6D object pose and size estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2642–2651 (2019)

    Google Scholar 

  27. Wang, J., Chen, K., Dou, Q.: Category-level 6D object pose estimation via cascaded relation and recurrent reconstruction networks. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4807–4814 (2021)

    Google Scholar 

  28. Zhou, Q.Y., Park, J., Koltun, V.: Open3D: A modern library for 3d data processing. arXiv preprint arXiv:1801.09847 (2018)

Download references

Acknowledgements

This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard Bruns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bruns, L., Jensfelt, P. (2023). On the Evaluation of RGB-D-Based Categorical Pose and Shape Estimation. In: Petrovic, I., Menegatti, E., Marković, I. (eds) Intelligent Autonomous Systems 17. IAS 2022. Lecture Notes in Networks and Systems, vol 577. Springer, Cham. https://doi.org/10.1007/978-3-031-22216-0_25

Download citation

Publish with us

Policies and ethics