Abstract
In crowd analysis tasks (crowds of humans, cattle, birds, drones, etc.) the low-level vision tools are usually the same, i.e. detection and tracking of either individuals or groups. The required results, however, are more complicated (e.g. patterns of group splitting/merging, changes in group sizes and membership, group formation and disappearance, etc.). To complete such tasks, raw results of detection/tracking are converted into data associations representing crowd structure/evolution. Normally, those associations are deterministic and based on target labeling. However, performances of detectors/trackers are non-perfect, i.e. their outcomes are effectively non-deterministic. We discuss matrix-based mathematical models of interactions between detectors and trackers to represent such data associations non-deterministically. In particular, a methodology for reconstructing weak or missing associations by alternative sequences of matrix operations is proposed. This can provide more reliable label correspondences between selected moments/points of monitored scenes. Apart from mathematical details, the paper presents examples illustrating feasibility of the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ali, S., Shah, M.: A lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–6 (2007). https://doi.org/10.1109/CVPR.2007.382977
Bendali-Braham, M., Weber, J., Forestier, G., Idoumghar, L., Muller, P.A.: Recent trends in crowd analysis: a review. Mach. Learn. Appl. 4, 100,023 (2021). https://doi.org/10.1016/j.mlwa.2021.100023
Bochinski, E., Senst, T., Sikora, T.: Extending iou based multi-object tracking by visual information. In: 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6 (2018). https://doi.org/10.1109/AVSS.2018.8639144
Ciaparrone, G., Luque Sanchez, F., Tabik, S., Troiano, L., Tagliaferri, R., Herrera, F.: Deep learning in video multi-object tracking: a survey. Neurocomputing 381, 61–88 (2020). https://doi.org/10.1016/j.neucom.2019.11.023
Dehghan, A., Modiri Assari, S., Shah, M.: Gmmcp tracker: globally optimal generalized maximum multi clique problem for multiple object tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4091–4099 (2015). https://doi.org/10.1109/CVPR.2015.7299036
Dollár, P., Appel, R., Belongie, S., Perona, P.: Fast feature pyramids for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1532–1545 (2014). https://doi.org/10.1109/TPAMI.2014.2300479
Feldmann, M., Franken, D., Koch, W.: Tracking of extended objects and group targets using random matrices. IEEE Trans. Signal Process. 59(4), 1409–1420 (2011). https://doi.org/10.1109/TSP.2010.2101064
Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets, 3rd edn., chap. Finding Similar Items. Cambridge University Press (2020)
Lia, D., Zhua, J., Xua, B., Lua, M., Li, M.: An ant-based filtering random-finite-set approach to simultaneous localization and mapping. Int. J. Appl. Math. Comput. Sci. 28(3), 505–519 (2018). https://doi.org/10.2478/amcs-2018-0039
Mazzon, R., Poiesi, F., Cavallaro, A.: Detection and tracking of groups in crowd. In: 2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 202–207 (2013). https://doi.org/10.1109/AVSS.2013.6636640
Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7263–7271 (2017). https://doi.org/10.1109/CVPR.2017.690
Rezatofighi, S.H., Milan, A., Zhang, Z., Shi, Q., Dick, A., Reid, I.: Joint probabilistic data association revisited. In: IEEE International Conference on Computer Vision (ICCV), pp. 3047–3055. IEEE (2015). https://doi.org/10.1109/ICCV.2015.349
Schranz, M., Umlauft, M., Sende, M., Elmenreich, W.: Swarm robotic behaviors and current applications. Front. Robot. AI 7(36) (2020). https://doi.org/10.3389/frobt.2020.00036
Śluzek, A.: Zastosowanie metod momentowych do identyfikacji obiektów w cyfrowych systemach wizyjnych. Wydawnictwa Politechniki Warszawskiej, Warszawa (1990)
Sreenu, G., Saleem Durai, M.: Intelligent video surveillance: a review through deep learning techniques for crowd analysis. J. Big Data 6(48) (2019). https://doi.org/10.1186/s40537-019-0212-5
Steyer, S., Tanzmeister, G., Lenk, C., Dallabetta, V., Wollherr, D.: Data association for grid-based object tracking using particle labeling. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 3036–3043 (2018). https://doi.org/10.1109/ITSC.2018.8569511
Tomar, A., Kumar, S., Pant, B.: Crowd analysis in video surveillance: a review. In: 2022 International Conference on Decision Aid Sciences and Applications (DASA), pp. 162–168 (2022). https://doi.org/10.1109/DASA54658.2022.9765008
Wang, X., Lu, J.: Collective behaviors through social interactions in bird flocks. IEEE Circuits Syst. Mag. 19(3), 6–22 (2019). https://doi.org/10.1109/MCAS.2019.2924507
Zhou, T., Yang, J., Loza, A., Al-Mualla, M., Bhaskar, H.: Crowd modeling framework using fast head detection and shape-aware matching. J. Electron. Imaging 24 (2015). https://doi.org/10.1117/1.JEI.24.2.023019
Zhou, X., Zhuo, J., Krahenbuhl, P.: Bottom-up object detection by grouping extreme and center points. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 850–859 (2019). https://doi.org/10.1109/CVPR.2019.00094
Zitouni, M.S., Bhaskar, H., Al-Mualla, M.E.: Robust background modeling and foreground detection using dynamic textures. In: International Conference on Computer Vision Theory and Applications (VISIGRAPP ’16), pp. 403–410 (2016). https://doi.org/10.5220/0005724204030410
Zitouni, M.S., Śluzek, A.: Video-surveillance tools for monitoring social responsibility under covid-19 restrictions. In: Computer Vision and Graphics (Proceedings of the ICCVG 2020), pp. 227–239. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-59006-2_20
Zitouni, M.S., Śluzek, A.: A data association model for analysis of crowd structure. Int. J. Appl. Math. Comput. Sci. 32(1), 81–94 (2022). https://doi.org/10.34768/amcs-2022-0007
Zitouni, M.S., Sluzek, A., Bhaskar, H.: Cnn-based analysis of crowd structure using automatically annotated training data. In: IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) (2019). https://doi.org/10.1109/AVSS.2019.8909846
Zitouni, M.S., Sluzek, A., Bhaskar, H.: Visual analysis of socio-cognitive crowd behaviors for surveillance: a survey and categorization of trends and methods. Eng. Appl. Artif. Intell. 82, 294–312 (2019). https://doi.org/10.1016/j.engappai.2019.04.012
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Śluzek, A., Sami Zitouni, M. (2023). On Formal Models of Interactions Between Detectors and Trackers in Crowd Analysis Tasks. In: Chmielewski, L.J., Orłowski, A. (eds) Computer Vision and Graphics. ICCVG 2022. Lecture Notes in Networks and Systems, vol 598. Springer, Cham. https://doi.org/10.1007/978-3-031-22025-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-22025-8_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22024-1
Online ISBN: 978-3-031-22025-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)