Abstract
Lung cancer is the most deadly malignancy, with distant metastasis being a major negative prognostic factor. Recently, interest is growing in imaging data as a source of predictors due to the low invasiveness of their acquisition. Using a cohort of 131 patients and a total of 356 ROIs we built a Cox regression model which predicts metastasis and time to its occurrence based on radiomic features extracted from PET/CT images. We employed several variable selection methods, including filtering based on correlation, univariate analysis, recursive elimination and LASSO, and obtained a C-index of 0.7 for the best model. This result shows that radiomic features have great potential as predictors of metastatic relapse, knowledge of which could aid clinicians in planning treatment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aerts, H.J.W.L., et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, 4006 (2014). https://doi.org/10.1038/ncomms5006
Bade, B.C., Dela Cruz, C.S.: Lung cancer 2020: epidemiology, etiology, and prevention. Clin. Chest Med. 41(1), 1–24 (2020). https://doi.org/10.1016/j.ccm.2019.10.001. https://www.sciencedirect.com/science/article/pii/S0272523119300802
Chen, K., Yang, F., Jiang, G., Li, J., Wang, J.: Development and validation of a clinical prediction model for n2 lymph node metastasis in non-small cell lung cancer. Ann. Thoracic Surg. 96(5), 1761–1768 (2013). https://doi.org/10.1016/j.athoracsur.2013.06.038. https://www.sciencedirect.com/science/article/pii/S0003497513013660
d’Amico, A., Borys, D., Gorczewska, I.: Radiomics and artificial intelligence for PET imaging analysis. Nucl. Med. Rev. 23(1), 36–39 (2020). https://doi.org/10.5603/NMR.2020.0005
Dela Cruz, C.S., Tanoue, L.T., Matthay, R.A.: Lung cancer: epidemiology, etiology, and prevention. Clin. Chest Med. 32(4), 605–644 (2011). https://doi.org/10.1016/j.ccm.2011.09.001. https://www.sciencedirect.com/science/article/pii/S0272523111000943
Ferreira Junior, J.R., Koenigkam-Santos, M., Cipriano, F.E.G., Fabro, A.T., de Azevedo-Marques, P.M.: Radiomics-based features for pattern recognition of lung cancer histopathology and metastases. Comput. Methods Prog. Biomed. 159, 23–30 (2018). https://doi.org/10.1016/j.cmpb.2018.02.015. https://www.sciencedirect.com/science/article/pii/S0169260717309410
Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1–22 (2010). https://www.jstatsoft.org/v33/i01/
Gillies, R.J., Kinahan, P.E., Hricak, H.: Radiomics: images are more than pictures, they are data. Radiology 278(2), 563–77 (2016). https://doi.org/10.1148/radiol.2015151169
van Griethuysen, J.J.M., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104–e107 (2017). https://doi.org/10.1158/0008-5472.CAN-17-0339
Kumar, V., et al.: Radiomics: the process and the challenges. Magn. Reson. Imaging 30(9), 1234–1248 (2012). https://doi.org/10.1016/j.mri.2012.06.010
Lambin, P., et al.: Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer (Oxford, England : 1990) 48(4), 441–6 (2012). https://doi.org/10.1016/j.ejca.2011.11.036
Popper, H.H.: Progression and metastasis of lung cancer. Cancer Metastasis Rev. 35(1), 75–91 (2016). https://doi.org/10.1007/s10555-016-9618-0
Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. J. Stat. Softw. 39(5), 1–13 (2011). https://www.jstatsoft.org/v39/i05/
Sung, H., et al.: Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 71(3), 209–249 (2021). https://doi.org/10.3322/caac.21660. https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.3322/caac.21660
Therneau, T.M., Grambsch, P.M.: Modeling Survival Data: Extending the Cox Model. Springer, New York (2000). https://doi.org/10.1007/978-1-4757-3294-8
Therneau, T.M.: A Package for Survival Analysis in R (2021). https://CRAN.R-project.org/package=survival, r package version 3.2-13
Zhou, H., et al.: Diagnosis of distant metastasis of lung cancer: based on clinical and radiomic features. Transl. Oncol. 11(1), 31–36 (2018). https://doi.org/10.1016/j.tranon.2017.10.010. https://www.sciencedirect.com/science/article/pii/S1936523317303200
Acknowledgement
This work was supported by Polish National Science Centre, grant number: UMO-2020/37/B/ST6/01959 and Silesian University of Technology statutory research funds. Calculations were performed on the Ziemowit computer cluster in the Laboratory of Bioinformatics and Computational Biology created in the EU Innovative Economy Programme POIG.02.01.00-00-166/08 and expanded in the POIG.02.03.01-00-040/13 project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wilk, A., Borys, D., Fujarewicz, K., d’Amico, A., Suwiński, R., Świerniak, A. (2022). Potential of Radiomics Features for Predicting Time to Metastasis in NSCLC. In: Nguyen, N.T., Tran, T.K., Tukayev, U., Hong, TP., Trawiński, B., Szczerbicki, E. (eds) Intelligent Information and Database Systems. ACIIDS 2022. Lecture Notes in Computer Science(), vol 13758. Springer, Cham. https://doi.org/10.1007/978-3-031-21967-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-21967-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21966-5
Online ISBN: 978-3-031-21967-2
eBook Packages: Computer ScienceComputer Science (R0)