Potential of Radiomics Features for Predicting Time to Metastasis in NSCLC | SpringerLink
Skip to main content

Potential of Radiomics Features for Predicting Time to Metastasis in NSCLC

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2022)

Abstract

Lung cancer is the most deadly malignancy, with distant metastasis being a major negative prognostic factor. Recently, interest is growing in imaging data as a source of predictors due to the low invasiveness of their acquisition. Using a cohort of 131 patients and a total of 356 ROIs we built a Cox regression model which predicts metastasis and time to its occurrence based on radiomic features extracted from PET/CT images. We employed several variable selection methods, including filtering based on correlation, univariate analysis, recursive elimination and LASSO, and obtained a C-index of 0.7 for the best model. This result shows that radiomic features have great potential as predictors of metastatic relapse, knowledge of which could aid clinicians in planning treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aerts, H.J.W.L., et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, 4006 (2014). https://doi.org/10.1038/ncomms5006

    Article  Google Scholar 

  2. Bade, B.C., Dela Cruz, C.S.: Lung cancer 2020: epidemiology, etiology, and prevention. Clin. Chest Med. 41(1), 1–24 (2020). https://doi.org/10.1016/j.ccm.2019.10.001. https://www.sciencedirect.com/science/article/pii/S0272523119300802

  3. Chen, K., Yang, F., Jiang, G., Li, J., Wang, J.: Development and validation of a clinical prediction model for n2 lymph node metastasis in non-small cell lung cancer. Ann. Thoracic Surg. 96(5), 1761–1768 (2013). https://doi.org/10.1016/j.athoracsur.2013.06.038. https://www.sciencedirect.com/science/article/pii/S0003497513013660

  4. d’Amico, A., Borys, D., Gorczewska, I.: Radiomics and artificial intelligence for PET imaging analysis. Nucl. Med. Rev. 23(1), 36–39 (2020). https://doi.org/10.5603/NMR.2020.0005

    Article  Google Scholar 

  5. Dela Cruz, C.S., Tanoue, L.T., Matthay, R.A.: Lung cancer: epidemiology, etiology, and prevention. Clin. Chest Med. 32(4), 605–644 (2011). https://doi.org/10.1016/j.ccm.2011.09.001. https://www.sciencedirect.com/science/article/pii/S0272523111000943

  6. Ferreira Junior, J.R., Koenigkam-Santos, M., Cipriano, F.E.G., Fabro, A.T., de Azevedo-Marques, P.M.: Radiomics-based features for pattern recognition of lung cancer histopathology and metastases. Comput. Methods Prog. Biomed. 159, 23–30 (2018). https://doi.org/10.1016/j.cmpb.2018.02.015. https://www.sciencedirect.com/science/article/pii/S0169260717309410

  7. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1–22 (2010). https://www.jstatsoft.org/v33/i01/

  8. Gillies, R.J., Kinahan, P.E., Hricak, H.: Radiomics: images are more than pictures, they are data. Radiology 278(2), 563–77 (2016). https://doi.org/10.1148/radiol.2015151169

    Article  Google Scholar 

  9. van Griethuysen, J.J.M., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104–e107 (2017). https://doi.org/10.1158/0008-5472.CAN-17-0339

    Article  Google Scholar 

  10. Kumar, V., et al.: Radiomics: the process and the challenges. Magn. Reson. Imaging 30(9), 1234–1248 (2012). https://doi.org/10.1016/j.mri.2012.06.010

  11. Lambin, P., et al.: Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer (Oxford, England : 1990) 48(4), 441–6 (2012). https://doi.org/10.1016/j.ejca.2011.11.036

  12. Popper, H.H.: Progression and metastasis of lung cancer. Cancer Metastasis Rev. 35(1), 75–91 (2016). https://doi.org/10.1007/s10555-016-9618-0

    Article  Google Scholar 

  13. Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. J. Stat. Softw. 39(5), 1–13 (2011). https://www.jstatsoft.org/v39/i05/

  14. Sung, H., et al.: Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 71(3), 209–249 (2021). https://doi.org/10.3322/caac.21660. https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.3322/caac.21660

  15. Therneau, T.M., Grambsch, P.M.: Modeling Survival Data: Extending the Cox Model. Springer, New York (2000). https://doi.org/10.1007/978-1-4757-3294-8

    Book  MATH  Google Scholar 

  16. Therneau, T.M.: A Package for Survival Analysis in R (2021). https://CRAN.R-project.org/package=survival, r package version 3.2-13

  17. Zhou, H., et al.: Diagnosis of distant metastasis of lung cancer: based on clinical and radiomic features. Transl. Oncol. 11(1), 31–36 (2018). https://doi.org/10.1016/j.tranon.2017.10.010. https://www.sciencedirect.com/science/article/pii/S1936523317303200

Download references

Acknowledgement

This work was supported by Polish National Science Centre, grant number: UMO-2020/37/B/ST6/01959 and Silesian University of Technology statutory research funds. Calculations were performed on the Ziemowit computer cluster in the Laboratory of Bioinformatics and Computational Biology created in the EU Innovative Economy Programme POIG.02.01.00-00-166/08 and expanded in the POIG.02.03.01-00-040/13 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agata Wilk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wilk, A., Borys, D., Fujarewicz, K., d’Amico, A., Suwiński, R., Świerniak, A. (2022). Potential of Radiomics Features for Predicting Time to Metastasis in NSCLC. In: Nguyen, N.T., Tran, T.K., Tukayev, U., Hong, TP., Trawiński, B., Szczerbicki, E. (eds) Intelligent Information and Database Systems. ACIIDS 2022. Lecture Notes in Computer Science(), vol 13758. Springer, Cham. https://doi.org/10.1007/978-3-031-21967-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21967-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21966-5

  • Online ISBN: 978-3-031-21967-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics