Abstract
This paper includes a presentation of experiments performed on Contextual Neural Networks with a dynamic field of view. It is checked how their properties can be affected by the usage of not-uniform numbers of groups in different layers of contextual neurons. Basic classification properties and activity of connections are reported based on simulations with H2O machine learning server and Generalized Backpropagation algorithm. Results are obtained for data sets with a high number of attributes (gene expression of bone marrow cancer and myeloid leukemia) as well as for standard problems from UCI Machine Learning Repository. Results indicate that layer-wise selection of numbers of connection groups can have a positive influence on the behavior of Contextual Neural Networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Nasser, I.M., Abu-Naser, S.S.: Lung cancer detection using artificial neural network. Int. J. Eng. Inform. Syst. (IJEAIS) 3(3), 17–23 (2019)
Suleymanova, I., et al.: A deep convolutional neural network approach for astrocyte detection. Sci. Rep. 8(12878), 1–7 (2018)
Wang, Z.H., Horng, G.J., Hsu, T.H., Chen, C.C., Jong, G.J.: A novel facial thermal feature extraction method for non-contact healthcare system. IEEE Access 8, 86545–86553 (2020)
Tsai, Y.C., et al.: FineNet: a joint convolutional and recurrent neural network model to forecast and recom-mend anomalous financial items. In: Proceedings of the 13th ACM Conference on Recommender Systems RecSys’19. ACM New York, NY, USA, pp. 536–537 (2019)
Mendez, K.M., Broadhurst, D.I., Reinke, S.N.: The application of artificial neural networks in metabolomics: a historical perspective. Metabolomics 15(11), 1–14 (2019). https://doi.org/10.1007/s11306-019-1608-0
Cabrera-Vives, G., Reyes, I., Förster, F., Estévez, P.A., Maureira, J.: Supernovae detection by using convolutional neural networks. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 251–258 (2016). https://doi.org/10.1109/IJCNN.2016.7727206
Rosu, C., Bacu, V.: Asteroid image classification using convolutional neural networks. In: 2021 IEEE 17th International Conference on Intelligent Computer Communication and Processing (ICCP), pp. 3–10 (2021). https://doi.org/10.1109/ICCP53602.2021.9733484
Chen, S., Zhang, S., Shang, J., Chen, B., Zheng, N.: Brain-inspired cognitive model with attention for self-driving cars. IEEE Trans. Cognitive Dev. Syst. 11(1), 13–25 (2019)
Cheng, L., Jiang, F., Wang, Z., Li, J.: Multi-constrained real-time entry guidance using deep neural networks. IEEE Trans. Aerosp. Electron. Syst. 5(1), 325–340 (2021). https://doi.org/10.1109/taes.2020.3015321
Cheng, L., Wang, Z., Jiang, F., Zhou, C.: Real-time optimal control for spacecraft orbit transfer via multiscale deep neural networks. IEEE Trans. Aerosp. Electron. Syst. 55(5), 2436–2450 (2019). https://doi.org/10.1109/TAES.2018.2889571
Bakhadirovna, M.M., Azatovich S.M., Ulugbek Otkir Ugli, B.M.: Study of neural networks in telecommunication systems. In: 2021 International Conference on Information Science and Communications Technologies (ICISCT), pp. 1–4 (2021). https://doi.org/10.1109/ICISCT52966.2021.9670198
Guest, D., Cranmer, K., Whiteson, D.: Deep learning and its application to LHC physics. Annu. Rev. Nucl. Part. Sci. 68, 1–22 (2018)
Liu, L., Zheng, Y., Tang, D., Yuan, Y., Fan, C., Zhou, K.: Automatic skin binding for production characters with deep graph networks. ACM Trans. Graph. (SIGGRAPH) 38(4), 1–12 (2019)
Gao, D., Li, X., Dong, Y., Peers, P., Xu, K., Tong, X.: Deep Inverse Rendering for High-resolution SVBRDF Estimation from an Arbitrary Number of Images. ACM Trans. Graph. (SIGGRAPH) 38(4), 1–15 (2019)
Higgins, I., et al.: β-VAE: Learning basic visual concepts with a constrained variational framework. In: International Conference on Learning Repr., ICLR 2017, vol. 2, no. 5, pp. 1–22 (2017)
Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representations, ICLR 2018, pp. 1–26 (2018)
Huang, X., Tan, H., Lin, G., Tian, Y.: A LSTM-based bidirectional translation model for optimizing rare words and terminologies. In: 2018 IEEE International Conference on Artificial Intelligence and Big Data (ICAIBD). IEEE, China, pp. 5077–5086 (2018)
Athiwaratkun, B., Stokes, J.W.: Malware classification with LSTM and GRU language models and a character-level CNN. In: Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2482–2486. IEEE, USA (2017)
Gong, K., et al.: Iterative PET image reconstruction using convolutional neural network representation. IEEE Trans. Med. Imaging 38(3), 675–685 (2019)
Munkhdalai, L., Park, K.-H., Batbaatar, E., Theera-Umpon, N., Ho Ryu, K.: Deep learning-based demand forecasting for Korean postal delivery service. IEEE Access 8, 188135–188145 (2020)
Dozono, H., Niina, G., Araki, S.: Convolutional self organizing map. In: 2016 IEEE International Conference on Computational Science and Computational Intelligence (CSCI), IEEE, pp. 767–771 (2016)
Amato, F., et al.,: Multilayer perceptron: an intelligent model for classification and intrusion detection. In: 31st International Conference on Advanced Information Networking and Applications Workshops (WAINA), pp. 686–691. IEEE, Taipei, Taiwan (2017)
Huk, M.: Backpropagation generalized delta rule for the selective attention Sigma-if artificial neural network. Int. J. App. Math. Comp. Sci. 22, 449–459 (2012)
Huk, M.: Notes on the generalized backpropagation algorithm for contextual neural networks with conditional aggregation functions. J. Intell. Fuzzy Syst. 32, 1365–1376 (2017)
Huk, M.: Stochastic optimization of contextual neural networks with RMSprop. In: Nguyen, N.T., Jearanaitanakij, K., Selamat, A., Trawiński, B., Chittayasothorn, S. (eds.) ACIIDS 2020. LNCS (LNAI), vol. 12034, pp. 343–352. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42058-1_29
Burnell, E.D., Wołk, K., Waliczek, K., Kern, R.: The impact of constant field of attention on properties of contextual neural networks. In: Nguyen, N.T., Trawinski, B., et al. (eds.) 12th Asian Conference on Intelligent Information and Database Systems, ACIIDS 2020, vol. 12034, pp. 364–375. LNAI, Springer (2020)
Huk, M.: Non-uniform initialization of inputs groupings in contextual neural networks. In: Nguyen, N.T., Gaol, F.L., Hong, T.-P., Trawiński, B. (eds.) ACIIDS 2019. LNCS (LNAI), vol. 11432, pp. 420–428. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14802-7_36
Huk, M.: Training contextual neural networks with rectifier activation functions: Role and adoption of sorting methods. J. Intell. Fuzzy Syst. 37(6), 7493–7502 (2019)
Huk, M.: Weights ordering during training of contextual neural networks with generalized error backpropagation: importance and selection of sorting algorithms. In: Nguyen, N.T., Hoang, D.H., Hong, T.-P., Pham, H., Trawiński, B. (eds.) ACIIDS 2018. LNCS (LNAI), vol. 10752, pp. 200–211. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75420-8_19
Szczepanik, M., et al.: Multiple classifier error probability for multi-class problems. Eksploatacja i Niezawodnosc - Maintenance Reliab. 51(3), 12–16 (2011). https://doi.org/10.17531/ein
Huk, M.: Measuring computational awareness in contextual neural networks. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, pp. 002254–002259 (2016). https://doi.org/10.1109/SMC.2016.7844574
Szczepanik, M., Jóźwiak, I.: Data management for fingerprint recognition algorithm based on characteristic points’ groups. New Trends Databases Inform. Syst. Found. Comp. Decis. Sci. 38(2), 123–130 (2013)
Szczepanik, M., Jóźwiak, I.: Fingerprint recognition based on minutes groups using directing attention algorithms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS (LNAI), vol. 7268, pp. 347–354. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29350-4_42
Huk, M., Pietraszko, J.: Contextual neural-network based spectrum prediction for cognitive radio. In: 4th International Conference on Future Generation Communication Technology (FGCT 2015). IEEE Computer Society, London, UK, pp. 1–5 (2015)
Kwiatkowski, J., et al.: Context-sensitive text mining with fitness leveling genetic algorithm. In: 2015 IEEE 2nd International Conference on Cybernetics (CYBCONF), Gdynia, Poland, pp. 1–6, 2015, Electronic Publication (2015). ISBN: 978-1-4799-8321-6
Huk, M.: Using context-aware environment for elderly abuse prevention. In: Nguyen, N.T., Trawiński, B., Fujita, H., Hong, T.-P. (eds.) ACIIDS 2016. LNCS (LNAI), vol. 9622, pp. 567–574. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49390-8_55
Huk, M.: Context-related data processing with artificial neural networks for higher reliability of telerehabilitation systems. In: 17th International Conference on E-health Networking, Application and Services (HealthCom), pp. 217–221. IEEE Computer Society, Boston, USA (2015)
Privitera, C.M., Azzariti, M., Stark, L.W.: Locating regions-of-interest for the Mars Rover expedition. Int. J. Remote Sensing 21, 3327–3347 (2000)
UCI Machine Learning Repository: http://archive.ics.uci.edu/ml
Golub, T.R., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)
Glosser, C., Piermarocchi, C., Shanker, B.: Analysis of dense quantum dot systems using a self-consistent Maxwell-Bloch framework. In: Proceedings of 2016 IEEE Int. Symposium on Antennas and Propagation (USNC-URSI), Puerto Rico, pp. 1323–1324. IEEE (2016)
Huk, M.: Measuring the effectiveness of hidden context usage by machine learning methods under conditions of increased entropy of noise. In: 2017 3rd IEEE International Con-ference on Cybernetics (CYBCONF), pp. 1–6. Exeter (2017)
Mikusova, M., et al.: Towards layer-wise optimization of contextual neural networks with constant field of aggregation. In: Nguyen, N.T., Chittayasothorn, S., Niyato, D., Trawiński, B. (eds.) ACIIDS 2021. LNCS (LNAI), vol. 12672, pp. 743–753. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-73280-6_59
H2O.ai documentation: http://docs.h2o.ai/h2o/latest-stable/h2o-docs/index.html
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jodłowiec, M., Albu, A., Wołk, K., Thai-Nghe, N., Karasiński, A. (2022). Layer-Wise Optimization of Contextual Neural Networks with Dynamic Field of Aggregation. In: Nguyen, N.T., Tran, T.K., Tukayev, U., Hong, TP., Trawiński, B., Szczerbicki, E. (eds) Intelligent Information and Database Systems. ACIIDS 2022. Lecture Notes in Computer Science(), vol 13758. Springer, Cham. https://doi.org/10.1007/978-3-031-21967-2_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-21967-2_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21966-5
Online ISBN: 978-3-031-21967-2
eBook Packages: Computer ScienceComputer Science (R0)