Abstract
Finding partial periodic patterns in temporal databases is a challenging problem of great importance in many real-world applications. Most previous studies focused on finding these patterns in row temporal databases. To the best of our knowledge, there exists no study that aims to find partial periodic patterns in columnar temporal databases. One cannot ignore the importance of the knowledge that exists in very large columnar temporal databases. It is because real-world big data is widely stored in columnar temporal databases. With this motivation, this paper proposes an efficient algorithm, Partial Periodic Pattern-Equivalence Class Transformation (3P-ECLAT), to find desired patterns in a columnar temporal database. Experimental results on synthetic and real-world databases demonstrate that 3P-ECLAT is not only memory and runtime efficient but also highly scalable. Finally, we present the usefulness of 3P-ECLAT with a case study on air pollution analytics.
This research was funded by JSPS Kakenhi 21K12034.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: SIGMOD, pp. 207–216 (1993)
Amphawan, K., Lenca, P., Surarerks, A.: Mining top-k periodic-frequent pattern from transactional databases without support threshold. In: Papasratorn, B., Chutimaskul, W., Porkaew, K., Vanijja, V. (eds.) IAIT 2009. CCIS, vol. 55, pp. 18–29. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10392-6_3
Amphawan, K., Surarerks, A., Lenca, P.: Mining periodic-frequent itemsets with approximate periodicity using interval transaction-ids list tree. In: 2010 Third International Conference on Knowledge Discovery and Data Mining, pp. 245–248 (2010)
Kiran, R.U., Shang, H., Toyoda, M., Kitsuregawa, M.: Discovering partial periodic itemsets in temporal databases. In: Proceedings of the 29th International Conference on Scientific and Statistical Database Management. SSDBM ’17 (2017)
Luna, J.M., Fournier-Viger, P., Ventura, S.: Frequent itemset mining: a 25 years review. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 9(6), e1329 (2019)
Nofong, V.M., Wondoh, J.: Towards fast and memory efficient discovery of periodic frequent patterns. J. Inf. Telecommun. 3(4), 480–493 (2019)
Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S., Lee, Y.-K.: Discovering periodic-frequent patterns in transactional databases. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 242–253. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01307-2_24
Zaki, M.J.: Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng. 12(3), 372–390 (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ravikumar, P. et al. (2022). Towards Efficient Discovery of Partial Periodic Patterns in Columnar Temporal Databases. In: Nguyen, N.T., Tran, T.K., Tukayev, U., Hong, TP., Trawiński, B., Szczerbicki, E. (eds) Intelligent Information and Database Systems. ACIIDS 2022. Lecture Notes in Computer Science(), vol 13758. Springer, Cham. https://doi.org/10.1007/978-3-031-21967-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-21967-2_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21966-5
Online ISBN: 978-3-031-21967-2
eBook Packages: Computer ScienceComputer Science (R0)