Ulysses-RFSQ: A Novel Method to Improve Legal Information Retrieval Based on Relevance Feedback | SpringerLink
Skip to main content

Ulysses-RFSQ: A Novel Method to Improve Legal Information Retrieval Based on Relevance Feedback

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2022)

Abstract

Obtaining relevant legal documents fast, from very large datasets, is essential for the proper functioning of justice and legislative institutions. Nevertheless, legacy systems currently used by these institutions in Brazil are usually outdated, requiring a large deal of manual work. Legal Information Retrieval focuses on building new methods to deal with the large amount of legal texts, allowing the retrieval of relevant information from them. Relevance Feedback, an important aspect of information retrieval systems, uses the information given by the user to improve the document retrieval for a specific request. However, expanding its use to other queries is a difficult task. A possible approach is to use Relevance Feedback information from past, similar queries. In this paper, we propose Ulysses-RFSQ, a method based on this approach which gives a bonus for the documents marked as relevant for similar queries, and, through this bonus, updates the ranking created by a relevance score based Information Retrieval algorithm, which measures the similarity between the query text and the documents to be retrieved. Due to the lack of available datasets containing relevance information for similar queries, we used a corpus of legislative requests from the Brazilian Chamber of Deputies, which are in most cases redundant, allowing the assessment of the proposed method. According to the experimental results, adding the Relevance Feedback bonus to the documents score improved the Recall@20 of a BM25 algorithm by almost 3% in the legal dataset used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://joint-research-centre.ec.europa.eu/language-technology-resources/jrc-acquis_en.

  2. 2.

    https://trec.nist.gov.

  3. 3.

    http://www.clef-initiative.eu.

  4. 4.

    https://drive.camara.leg.br/s/c3p2nLgLRcMz6eX.

  5. 5.

    Legislative Consulting Job Request and Monitoring System - SisConle.

  6. 6.

    Legislative Information System - SiLeg.

References

  1. Albuquerque, H.O., et al.: UlyssesNER-Br: a corpus of Brazilian legislative documents for named entity recognition. In: Pinheiro, V., et al. (eds.) PROPOR 2022. LNCS (LNAI), vol. 13208, pp. 3–14. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98305-5_1

    Chapter  Google Scholar 

  2. Almeida, P.G.R.: Uma jornada para um Parlamento inteligente: Câmara dos Deputados do Brasil. Red Información 24 (2021). https://www.redinnovacion.org/revista/red-informaci’on-edici’on-n-24-marzo-2021

  3. Badenes-Olmedo, C., García, J.L.R., Corcho, Ó.: Legal document retrieval across languages: topic hierarchies based on synsets. CoRR abs/1911.12637 (2019)

    Google Scholar 

  4. Bhattacharya, P., Ghosh, K., Pal, A., Ghosh, S.: Methods for computing legal document similarity: a comparative study. ArXiv abs/2004.12307 (2020)

    Google Scholar 

  5. Brandt, M.B.: Ethical aspects in the organization of legislative information. KO Knowl. Organiz. 45(1), 3–12 (2018). https://doi.org/10.5771/0943-7444-2018-1-3

    Article  Google Scholar 

  6. Brandt, M.B.: Modelagem da informação legislativa: arquitetura da informação para o processo legislativo brasileiro. Ph.D. thesis, Faculdade de Filosofia e Ciências da Universidade Estadual Paulista (UNESP) (2020)

    Google Scholar 

  7. Cantador, I., Sánchez, L.Q.: Semantic annotation and retrieval of parliamentary content: a case study on the Spanish congress of deputies. In: Proceedings of the First Joint Conference of the Information Retrieval Communities in Europe (CIRCLE 2020). CEUR Workshop Proceedings, vol. 2621 (2020)

    Google Scholar 

  8. Cetintas, S., Si, L., Yuan, H.: Using past queries for resource selection in distributed information retrieval. Technical report, Department of Computer Science, Purdue University (2011)

    Google Scholar 

  9. Chalkidis, I., Fergadiotis, M., Manginas, N., Katakalou, E., Malakasiotis, P.: Regulatory compliance through Doc2Doc information retrieval: a case study in EU/UK legislation where text similarity has limitations. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 3498–3511 (2021). https://doi.org/10.18653/v1/2021.eacl-main.305

  10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019). https://doi.org/10.18653/v1/N19-1423

  11. Gomes, T., Ladeira, M.: A new conceptual framework for enhancing legal information retrieval at the Brazilian superior court of justice. In: Proceedings of the 12th International Conference on Management of Digital EcoSystems, MEDES 2020, pp. 26–29 (2020). https://doi.org/10.1145/3415958.3433087

  12. Gutiérrez Soto, C.: Exploring the reuse of past search results in information retrieval. Ph.D. thesis, Université de Toulouse, Université Toulouse III-Paul Sabatier (2016)

    Google Scholar 

  13. Gutiérrez-Soto, C., Hubert, G.: Probabilistic reuse of past search results. In: International Conference on Database and Expert Systems Applications - DEXA 2014, vol. 1, pp. 265–274 (2014)

    Google Scholar 

  14. Gutiérrez-Soto, C., Hubert, G.: Randomized algorithm for information retrieval using past search results. In: 2014 IEEE Eighth International Conference on Research Challenges in Information Science (RCIS), pp. 1–9 (2014)

    Google Scholar 

  15. Gutiérrez-Soto, C., Hubert, G.: On the reuse of past searches in information retrieval: study of two probabilistic algorithms. Int. J. Inf. Syst. Model. Des. (IJISMD) 6(2), 72–92 (2015)

    Article  Google Scholar 

  16. Hust, A.: Introducing query expansion methods for collaborative information retrieval. In: Reading and Learning, pp. 252–280 (2004)

    Google Scholar 

  17. Lv, Y., Zhai, C.: When documents are very long, BM25 fails! In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2011, pp. 1103–1104 (2011). https://doi.org/10.1145/2009916.2010070

  18. Maxwell, K.T., Schafer, B.: Concept and context in legal information retrieval. In: Proceedings of the 2008 Conference on Legal Knowledge and Information Systems: JURIX 2008: The Twenty-First Annual Conference, pp. 63–72 (2008)

    Google Scholar 

  19. Moshfeghi, Y., Velinov, K., Triantafillou, P.: Improving search results with prior similar queries. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, CIKM 2016, pp. 1985–1988 (2016). https://doi.org/10.1145/2983323.2983890

  20. Murata, H., Onoda, T., Yamada, S.: Comparative analysis of relevance for SVM-based interactive document retrieval. J. Adv. Comput. Intell. Intell. Inform. 17(2), 149–156 (2013). https://doi.org/10.20965/jaciii.2013.p0149

  21. de Oliveira, R.A.N., Junior, M.C.: Experimental analysis of stemming on jurisprudential documents retrieval. Information 9(2), 28 (2018). https://doi.org/10.3390/info9020028

    Article  Google Scholar 

  22. Onoda, T., Murata, H., Yamada, S.: SVM-based interactive document retrieval with active learning. New Gener. Comput. 26(1), 49–61 (2007)

    Article  MATH  Google Scholar 

  23. Robertson, S.E., Walker, S.: Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval. In: Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1994, pp. 232–241 (1994)

    Google Scholar 

  24. Russell-Rose, T., Chamberlain, J., Azzopardi, L.: Information retrieval in the workplace: a comparison of professional search practices. Inf. Process. Manag. 54(6), 1042–1057 (2018). https://doi.org/10.1016/j.ipm.2018.07.003

    Article  Google Scholar 

  25. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975). https://doi.org/10.1145/361219.361220

    Article  MATH  Google Scholar 

  26. Salton, G., Buckley, C.: Improving retrieval performance by relevance feedback. J. Am. Soc. Inf. Sci. 41(4), 288–297 (1990)

    Article  Google Scholar 

  27. Savoy, J.: Light stemming approaches for the French, Portuguese, German and Hungarian languages. In: Proceedings of the 2006 ACM Symposium on Applied Computing, SAC 2006, pp. 1031–1035 (2006). https://doi.org/10.1145/1141277.1141523

  28. Silva, N.F.F., et al.: Evaluating topic models in Portuguese political comments about bills from Brazil’s chamber of deputies. In: Britto, A., Valdivia Delgado, K. (eds.) BRACIS 2021. LNCS (LNAI), vol. 13074, pp. 104–120. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91699-2_8

    Chapter  Google Scholar 

  29. Song, S.K., Myaeng, S.H.: A novel term weighting scheme based on discrimination power obtained from past retrieval results. Inf. Process. Manag. 48(5), 919–930 (2012). https://doi.org/10.1016/j.ipm.2012.03.004

    Article  Google Scholar 

  30. Souza, E., et al.: Assessing the impact of stemming algorithms applied to Brazilian legislative documents retrieval. In: Proceedings of the 13th Brazilian Symposium in Information and Human Language Technology, SBC, pp. 227–236 (2021). https://doi.org/10.5753/stil.2021.17802

  31. Souza, E., et al.: An information retrieval pipeline for legislative documents from the Brazilian chamber of deputies. In: Legal Knowledge and Information Systems, pp. 119–126. IOS Press (2021). https://doi.org/10.3233/FAIA210326

  32. van Opijnen, M., Santos, C.: On the concept of relevance in legal information retrieval. Artificial Intelligence and Law 25(1), 65–87 (2017). https://doi.org/10.1007/s10506-017-9195-8

    Article  Google Scholar 

  33. Yin, P.Y., Bhanu, B., Chang, K.C., Dong, A.: Improving retrieval performance by long-term relevance information. In: International Conference on Pattern Recognition, vol. 3, pp. 533–536 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Vitório .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vitório, D., Souza, E., Martins, L., da Silva, N.F.F., de Leon Ferreira de Carvalho, A.C.P., Oliveira, A.L.I. (2022). Ulysses-RFSQ: A Novel Method to Improve Legal Information Retrieval Based on Relevance Feedback. In: Xavier-Junior, J.C., Rios, R.A. (eds) Intelligent Systems. BRACIS 2022. Lecture Notes in Computer Science(), vol 13653. Springer, Cham. https://doi.org/10.1007/978-3-031-21686-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21686-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21685-5

  • Online ISBN: 978-3-031-21686-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics