The Impact of State Representation on Approximate Q-Learning for a Selection Hyper-heuristic | SpringerLink
Skip to main content

The Impact of State Representation on Approximate Q-Learning for a Selection Hyper-heuristic

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13653))

Included in the following conference series:

  • 962 Accesses

Abstract

The choice of heuristic operators is strongly related to the performance of a (meta-)heuristic algorithm. Hence, applying an automated selection approach can increase the robustness of an optimization system. In this work, we investigate the use of a reinforcement learning technique as the selection mechanism of a hyper-heuristic algorithm. Specifically, we use the approximate Q-learning using an Artificial Neural Network as function approximation. Moreover, we evaluate different sets of metrics for representing the state of the environment, which in this scenario, must indicate the search stage of the optimization algorithm. The experiments conducted on six combinatorial problem domains indicate that, with simple state measures (combining the last action vector and fitness improvement rate), our approach yields better results compared to a state-of-the-art Multi-Armed Bandit approach, which does not have state representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.asap.cs.nott.ac.uk/external/chesc2011/.

References

  1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2), 235–256 (2002)

    Article  MATH  Google Scholar 

  2. Blum, C., Puchinger, J., Raidl, G.R., Roli, A.: Hybrid metaheuristics in combinatorial optimization: a survey. Appl. Soft Comput. 11(6), 4135–4151 (2011)

    Article  MATH  Google Scholar 

  3. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.: A classification of hyper-heuristic approaches. In: Gendreau, M., Potvin, JY. (eds.) Handbook of Metaheuristics. ISOR, vol. 146, pp. 449–468. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-1665-5_15

  4. Buzdalova, A., Kononov, V., Buzdalov, M.: Selecting evolutionary operators using reinforcement learning: initial explorations. In: Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 1033–1036 (2014)

    Google Scholar 

  5. Fialho, Á.: Adaptive Operator Selection for Optimization. Université Paris Sud - Paris XI (Dec, Theses (2010)

    Google Scholar 

  6. Handoko, S.D., Nguyen, D.T., Yuan, Z., Lau, H.C.: Reinforcement learning for adaptive operator selection in memetic search applied to quadratic assignment problem. In: Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 193–194. GECCO Comp 2014, Association for Computing Machinery, New York, NY, USA (2014)

    Google Scholar 

  7. Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Google Scholar 

  8. Li, K., Fialho, Á., Kwong, S., Zhang, Q.: Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evolution. Comput. 18(1), 114–130 (2014)

    Article  Google Scholar 

  9. Mısır, M., Verbeeck, K., De Causmaecker, P., Berghe, G.V.: An intelligent hyper-heuristic framework for CHeSC 2011. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 461–466. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34413-8_45

  10. Mosadegh, H., Ghomi, S.F., Süer, G.A.: Stochastic mixed-model assembly line sequencing problem: mathematical modeling and q-learning based simulated annealing hyper-heuristics. Eur. J. Oper. Res. 282(2), 530–544 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ochoa, G., et al.: HyFlex: a benchmark framework for cross-domain heuristic search. In: Hao, J.K., Middendorf, M. (eds.) European Conference on Evolutionary Computation in Combinatorial Optimisation(EvoCOP 2012), LNCS, vol. 7245, pp. 136–147. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29124-1_12

  12. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  13. Sharma, M., Komninos, A., López-Ibáñez, M., Kazakov, D.: Deep reinforcement learning based parameter control in differential evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 709–717 (2019)

    Google Scholar 

  14. Soria-Alcaraz, J.A., Ochoa, G., Sotelo-Figeroa, M.A., Burke, E.K.: A methodology for determining an effective subset of heuristics in selection hyper-heuristics. Eur. J. Oper. Res. 260(3), 972–983 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sutton, R.S., Barto, A.G.: Reinforcement Learning, Second Edition: An Introduction. MIT Press (2018)

    Google Scholar 

  16. Teng, T.H., Handoko, S.D., Lau, H.C.: Self-organizing neural network for adaptive operator selection in evolutionary search. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) Learning and Intelligent Optimization. LNTCS, vol 10079, pp. 187–202. LNCS, Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50349-3_13

  17. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augusto Dantas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dantas, A., Pozo, A. (2022). The Impact of State Representation on Approximate Q-Learning for a Selection Hyper-heuristic. In: Xavier-Junior, J.C., Rios, R.A. (eds) Intelligent Systems. BRACIS 2022. Lecture Notes in Computer Science(), vol 13653. Springer, Cham. https://doi.org/10.1007/978-3-031-21686-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21686-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21685-5

  • Online ISBN: 978-3-031-21686-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics