Application of the Sugeno Integral in Fuzzy Rule-Based Classification | SpringerLink
Skip to main content

Application of the Sugeno Integral in Fuzzy Rule-Based Classification

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2022)

Abstract

Fuzzy Rule-Based Classification System (FRBCS) is a well known technique to deal with classification problems. Recent studies have considered the usage of the Choquet integral and its generalizations to enhance the quality of such systems. Precisely, it was applied to the Fuzzy Reasoning Method (FRM) to aggregate the fired fuzzy rules when classify new data. On the other side, the Sugeno integral, another well known aggregation operator, obtained good results when applied to brain-computer interfaces. Those facts led to the present study in which we consider the Sugeno integral in classification problems. That is, the Sugeno integral is applied in the FRM of a widely used FRBCS and its performance is analyzed over 33 different datasets from the literature. In order to show the efficiency of this new approach, the obtained results are also compared to past studies involving the application of different aggregation functions. Finally, we perform a statistical analysis of the application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    An overview of the different generalizations of the Choquet integral is available in [11].

References

  1. Alcala-Fdez, J., Alcala, R., Herrera, F.: A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning. IEEE Trans. Fuzzy Syst. 19(5), 857–872 (2011)

    Article  Google Scholar 

  2. Alcalá-Fdez, J., et al.: Keel: a software tool to assess evolutionary algorithms for data mining problems. Soft Comput. 13(3), 307–318 (2009)

    Google Scholar 

  3. Bardozzo, F., et al.: Sugeno integral generalization applied to improve adaptive image binarization. Inf. Fus. 68, 37–45 (2021)

    Google Scholar 

  4. Barrenechea, E., Bustince, H., Fernandez, J., Paternain, D., Sanz, J.A.: Using the Choquet integral in the fuzzy reasoning method of fuzzy rule-based classification systems. Axioms 2(2), 208–223 (2013)

    Article  MATH  Google Scholar 

  5. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer, Berlin (2007)

    MATH  Google Scholar 

  6. Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5, 131–295 (1953–1954)

    Google Scholar 

  7. Cordón, O., del Jesus, M.J., Herrera, F.: A proposal on reasoning methods in fuzzy rule-based classification systems. Int. J. Approx. Reason. 20(1), 21–45 (1999)

    Article  Google Scholar 

  8. Cordon, O., del Jesus, M.J., Herrera, F.: Analyzing the reasoning mechanisms in fuzzy rule based classification systems. Mathware Soft Comput. 5(2–3), 321–332 (1998)

    MATH  Google Scholar 

  9. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Dias, C.A., et al.: Using the choquet integral in the pooling layer in deep learning networks. In: Barreto, G.A., Coelho, R. (eds.) NAFIPS 2018. CCIS, vol. 831, pp. 144–154. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95312-0_13

  11. Dimuro, G.P., et al.: The state-of-art of the generalizations of the Choquet integral: from aggregation and pre-aggregation to ordered directionally monotone functions. Inf. Fus. 57, 27–43 (2020)

    Google Scholar 

  12. Dimuro, G.P., et al.: Generalized \(C_{F_1F_2}\)-integrals: from choquet-like aggregation to ordered directionally monotone functions. Fuzzy Sets Syst. 378, 44–67 (2020)

    Google Scholar 

  13. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience (2000)

    Google Scholar 

  14. Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions, p. 480 (2009)

    Google Scholar 

  15. Hodges, J.L., Lehmann, E.L.: Ranks methods for combination of independent experiments in analysis of variance. Ann. Math. Statist. 33, 482–497 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  16. Holm, S.: A simple sequentially rejective multiple test procedure. Scandinavian J. Statist. 6, 65–70 (1979)

    MathSciNet  MATH  Google Scholar 

  17. Ishibuchi, H., Nakashima, T.: Effect of rule weights in fuzzy rule-based classification systems. IEEE Trans. Fuzzy Syst. 9(4), 506–515 (2001)

    Article  Google Scholar 

  18. Ishibuchi, H., Nakashima, T., Nii, M.: Classification and Modeling with Linguistic Information Granules. Advanced Approaches to Linguistic Data Mining. Advanced Information Processing, Springer, Berlin (2005). https://doi.org/10.1007/b138232

  19. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publisher, Dordrecht (2000)

    Book  MATH  Google Scholar 

  20. Ko, L., et al.: Multimodal fuzzy fusion for enhancing the motor-imagery-based brain computer interface. IEEE Comput. Intell. Magaz. 14(1), 96–106 (2019)

    Google Scholar 

  21. Leon-Garza, H., Hagras, H., Peña-Rios, A., Conway, A., Owusu, G.: A fuzzy rule-based system using a patch-based approach for semantic segmentation in floor plans. In: 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6 (2021)

    Google Scholar 

  22. Lixandru-Petre, I.O.: A fuzzy system approach for diabetes classification. In: 2020 International Conference on e-Health and Bioengineering (EHB), pp. 1–4 (2020)

    Google Scholar 

  23. Lucca, G., Dimuro, G.P., Fernandez, J., Bustince, H., Bedregal, B., Sanz, J.A.: Improving the performance of fuzzy rule-based classification systems based on a nonaveraging generalization of CC-integrals named \(C_{F_1F_2}\)-integrals. IEEE Trans. Fuzzy Syst. 27(1), 124–134 (2019)

    Article  Google Scholar 

  24. Lucca, G., et al.: Pre-aggregation functions: construction and an application. IEEE Trans. Fuzzy Syst. 24(2), 260–272 (2016)

    Google Scholar 

  25. Lucca, G., Sanz, J.A., Dimuro, G.P., Borges, E.N., Santos, H., Bustince, H.: Analyzing the performance of different fuzzy measures with generalizations of the choquet integral in classification problems. In: 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6 (2019)

    Google Scholar 

  26. Lucca, G., Sanz, J., Dimuro, G.P., Bedregal, B., Bustince, H.: Analyzing the behavior of aggregation and pre-aggregation functions in fuzzy rule-based classification systems with data complexity measures. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K.T., Krawczak, M. (eds.) IWIFSGN/EUSFLAT -2017. AISC, vol. 642, pp. 443–455. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-66824-6_39

  27. Lucca, G., et al.: CC-integrals: choquet-like copula-based aggregation functions and its application in fuzzy rule-based classification systems. Knowl. Based Syst. 119, 32–43 (2017)

    Google Scholar 

  28. Lucca, G., Sanz, J.A., Dimuro, G.P., Bedregal, B., Bustince, H., Mesiar, R.: CF-integrals: a new family of pre-aggregation functions with application to fuzzy rule-based classification systems. Inf. Sci. 435, 94–110 (2018)

    Article  MATH  Google Scholar 

  29. Marco-Detchart, C., Lucca, G., Lopez-Molina, C., De Miguel, L., Pereira Dimuro, G., Bustince, H.: Neuro-inspired edge feature fusion using Choquet integrals. Inf. Sci. 581, 740–754 (2021)

    Article  Google Scholar 

  30. Murofushi, T., Sugeno, M., Machida, M.: Non-monotonic fuzzy measures and the Choquet integral. Fuzzy Sets Syst. 64(1), 73–86 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nelsen, R.B.: An Introduction to Copulas. Springer Science & Business Media (2007)

    Google Scholar 

  32. da S. E. Tuy, P.G., Nogueira Rios, T.: Summarizer: fuzzy rule-based classification systems for vertical and horizontal big data. In: 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8 (2020)

    Google Scholar 

  33. Sugeno, M.: Theory of Fuzzy Integrals and its Applications. Ph.D. thesis, Tokyo Institute of Technology, Tokyo (1974)

    Google Scholar 

  34. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining, 1st edn. Addison-Wesley Longman Publishing Co., Inc, Boston, MA, USA (2005)

    Google Scholar 

  35. Wieczynski, J.C., et al.: Generalizing the GMC-RTOPSIS method using CT-integral pre-aggregation functions. In: 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8. IEEE, Los Alamitos (2020)

    Google Scholar 

  36. Wieczynski., J., Lucca., G., Borges., E., Dimuro., G., Lourenzutti., R., Bustince, H.: CC-separation measure applied in business group decision making. In: Proceedings of the 23rd International Conference on Enterprise Information Systems - Volume 1: ICEIS, pp. 452–462. SciTePress (2021)

    Google Scholar 

  37. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CNPq (proc. 305805/2021-5, 301618/2019-4), FAPERGS (proc. 19/2551-0001660-3) and Navarra de Servicios y Tecnologías, S.A. (NASERTIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Lucca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wieczynski, J., Lucca, G., Borges, E., Dimuro, G. (2022). Application of the Sugeno Integral in Fuzzy Rule-Based Classification. In: Xavier-Junior, J.C., Rios, R.A. (eds) Intelligent Systems. BRACIS 2022. Lecture Notes in Computer Science(), vol 13653. Springer, Cham. https://doi.org/10.1007/978-3-031-21686-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21686-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21685-5

  • Online ISBN: 978-3-031-21686-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics