Abstract
A positive working climate is essential in modern software development. It enhances productivity since a satisfied developer tends to deliver better results. Sentiment analysis tools are a means to analyze and classify textual communication between developers according to the polarity of the statements. Most of these tools deliver promising results when used with test data from the domain they are developed for (e.g., GitHub). But the tools’ outcomes lack reliability when used in a different domain (e.g., Stack Overflow). One possible way to mitigate this problem is to combine different tools trained in different domains. In this paper, we analyze a combination of three sentiment analysis tools in a voting classifier according to their reliability and performance. The tools are trained and evaluated using five already existing polarity data sets (e.g. from GitHub). The results indicate that this kind of combination of tools is a good choice in the within-platform setting. However, a majority vote does not necessarily lead to better results when applying in cross-platform domains. In most cases, the best individual tool in the ensemble is preferable. This is mainly due to the often large difference in performance of the individual tools, even on the same data set. However, this may also be due to the different annotated data sets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cabrera-Diego, L.A., Bessis, N., Korkontzelos, I.: Classifying emotions in stack overflow and JIRA using a multi-label approach. Knowl. Based Syst. 195, 105633 (2020). https://doi.org/10.1016/j.knosys.2020.105633
Calefato, F., Lanubile, F., Maiorano, F., Novielli, N.: Sentiment polarity detection for software development. Empir. Softw. Eng. 23(3), 1352–1382 (2017). https://doi.org/10.1007/s10664-017-9546-9
Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psycholog. Bull. 76(5), 378–382 (1971). https://doi.org/10.1037/h0031619
Gachechiladze, D., Lanubile, F., Novielli, N., Serebrenik, A.: Anger and its direction in collaborative software development. In: Proceedings of the 39th International Conference on Software Engineering: New Ideas and Emerging Results Track, ICSE-NIER 2017, pp. 11–14. IEEE Press (2017). https://doi.org/10.1109/ICSE-NIER.2017.18
Graziotin, D., Wang, X., Abrahamsson, P.: Do feelings matter? On the correlation of affects and the self-assessed productivity in software engineering. J. Softw. Evol. Process 27(7), 467–487 (2015). https://doi.org/10.1002/smr.1673
Herrmann, M., Klünder, J.: From textual to verbal communication: towards applying sentiment analysis to a software project meeting. In: 2021 IEEE 29th International Requirements Engineering Conference Workshops (REW), pp. 371–376 (2021). https://doi.org/10.1109/REW53955.2021.00065
Herrmann, M., Obaidi, M., Chazette, L., Klünder, J.: On the subjectivity of emotions in software projects: how reliable are pre-labeled data sets for sentiment analysis? J. Syst. Softw. 193, 111448 (2022). https://doi.org/10.1016/j.jss.2022.111448
Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33(1), 159–174 (1977). https://doi.org/10.2307/2529310
Lin, B., Cassee, N., Serebrenik, A., Bavota, G., Novielli, N., Lanza, M.: Opinion mining for software development: a systematic literature review. ACM Trans. Softw. Eng. Methodol. 31(3) (2022). https://doi.org/10.1145/3490388
Lin, B., Zampetti, F., Bavota, G., Di Penta, M., Lanza, M., Oliveto, R.: Sentiment analysis for software engineering: how far can we go? In: Proceedings of the 40th International Conference on Software Engineering, ICSE 2018, pp. 94–104. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3180155.3180195
Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach (2019). https://doi.org/10.48550/ARXIV.1907.11692
Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval, reprinted Cambridge University Press, Cambridge (2009)
Novielli, N., Calefato, F., Dongiovanni, D., Girardi, D., Lanubile, F.: Can we use se-specific sentiment analysis tools in a cross-platform setting? In: Proceedings of the 17th International Conference on Mining Software Repositories, MSR 20220. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3379597.3387446
Novielli, N., Calefato, F., Dongiovanni, D., Girardi, D., Lanubile, F.: A gold standard for polarity of emotions of software developers in GitHub (2020). https://doi.org/10.6084/m9.figshare.11604597.v1
Novielli, N., Calefato, F., Lanubile, F.: A gold standard for emotion annotation in stack overflow. In: 2018 IEEE/ACM 15th International Conference on Mining Software Repositories (MSR), MSR 2018, pp. 14–17. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3196398.3196453
Novielli, N., Calefato, F., Lanubile, F., Serebrenik, A.: Assessment of off-the-shelf SE-specific sentiment analysis tools: an extended replication study. Empir. Softw. Eng. 26(4), 1–29 (2021). https://doi.org/10.1007/s10664-021-09960-w
Novielli, N., Girardi, D., Lanubile, F.: A benchmark study on sentiment analysis for software engineering research. In: Proceedings of the 15th International Conference on Mining Software Repositories, MSR 2018, pp. 364–375. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3196398.3196403
Obaidi, M., Nagel, L., Specht, A., Klünder, J.: Sentiment analysis tools in software engineering: a systematic mapping study. Inf. Softw. Technol. 151, 107018 (2022). https://doi.org/10.1016/j.infsof.2022.107018
Ortu, M., et al.: The emotional side of software developers in JIRA. In: Proceedings of the 13th International Conference on Mining Software Repositories, MSR 2016, pp. 480–483. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2901739.2903505
Parrott, W.G.: Emotions in Social Psychology: Essential Readings. Psychology Press (2001)
Schneider, K., Klünder, J., Kortum, F., Handke, L., Straube, J., Kauffeld, S.: Positive affect through interactions in meetings: the role of proactive and supportive statements. J. Syst. Softw. 143, 59–70 (2018). https://doi.org/10.1016/j.jss.2018.05.001
Uddin, G., Guéhénuc, Y.G., Khomh, F., Roy, C.K.: An empirical study of the effectiveness of an ensemble of stand-alone sentiment detection tools for software engineering datasets. ACM Trans. Softw. Eng. Methodol. 31(3) (2022). https://doi.org/10.1145/3491211
Uddin, G., Khomh, F.: Automatic mining of opinions expressed about APIS in stack overflow. IEEE Trans. Software Eng. 47(3), 522–559 (2021). https://doi.org/10.1109/TSE.2019.2900245
Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation in Software Engineering. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-29044-2
Zhang, T., Xu, B., Thung, F., Haryono, S.A., Lo, D., Jiang, L.: Sentiment analysis for software engineering: How far can pre-trained transformer models go? In: 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME), pp. 70–80 (2020). https://doi.org/10.1109/ICSME46990.2020.00017
Acknowledgment
This research was funded by the Leibniz University Hannover as a Leibniz Young Investigator Grant (Project ComContA, Project Number 85430128, 2020–2022).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Obaidi, M., Holm, H., Schneider, K., Klünder, J. (2022). On the Limitations of Combining Sentiment Analysis Tools in a Cross-Platform Setting. In: Taibi, D., Kuhrmann, M., Mikkonen, T., Klünder, J., Abrahamsson, P. (eds) Product-Focused Software Process Improvement. PROFES 2022. Lecture Notes in Computer Science, vol 13709. Springer, Cham. https://doi.org/10.1007/978-3-031-21388-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-21388-5_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21387-8
Online ISBN: 978-3-031-21388-5
eBook Packages: Computer ScienceComputer Science (R0)