Evaluating Adaptive and Non-adaptive Strategies for Selecting and Orienting Influencer Agents for Effective Flock Control | SpringerLink
Skip to main content

Evaluating Adaptive and Non-adaptive Strategies for Selecting and Orienting Influencer Agents for Effective Flock Control

  • Conference paper
  • First Online:
PRIMA 2022: Principles and Practice of Multi-Agent Systems (PRIMA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13753))

  • 940 Accesses

Abstract

Flocks navigate for large distances, moving in a coherent path through space, under mutual influence of flock members. Such influences may include repulsion, orientation, and attraction. Certain applications give rise to the need to control the movements of flocks, e.g., circumventing critical zones. Researchers have investigated the problem of seeding flocks with a percentage of externally controlled agents to achieve effective flock control. Recent studies of flock control include orthogonal directions of (a) selecting influencing or leader agents and (b) orienting the leader agents. We build on these studies and evaluate combinations of selecting and orienting choices for fast convergence of the flock to follow desired travel directions with both adaptive and non-adaptive selection and orientation algorithms. We evaluate the effectiveness of combined flock control strategies under different physical world models. We explore the case of non-looping (non-toroidal) environments and attempt to overcome their challenges. (This is a continuation of work presented here [3]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alboul, L., Saez-Pons, J., Penders, J.: Mixed human-robot team navigation in the guardians project. In: IEEE International Workshop on. Safety, Security and Rescue Robotics, SSRR 2008, pp. 95–101. IEEE (2008)

    Google Scholar 

  2. Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218(1), 1–11 (2002)

    Article  MathSciNet  Google Scholar 

  3. Dees, A., Hale, J., Sen, S.: Evaluating adaptive and non-adaptive strategies for selecting and orienting influencer agents for effective flock control

    Google Scholar 

  4. Fu, D.Y., Wang, E.S., Kraft, P.M., Grosz, B.J.: Influencing flock formation in low-density settings. In: Proceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-1), pp. 1604–1612 (2018)

    Google Scholar 

  5. Genter, K., Stone, P.: Ad hoc teamwork behaviors for influencing a flock. Acta Polytech. J. 56(1) (2016)

    Google Scholar 

  6. Genter, K., Stone, P.: Adding influencing agents to a flock. In: Proceedings of the 15th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-16), pp. 615–623 (2016)

    Google Scholar 

  7. Genter, K., Zhang, S., Stone, P.: Determining placements of influencing agents in a flock. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems (AAMAS-15), pp. 247–255 (2015)

    Google Scholar 

  8. Han, J., Li, M., Guo, L.: Soft control on collective behavior of a group of autonomous agents by a shill agent. J. Syst. Sci. Complex. 19(1), 54–62 (2006)

    Article  MathSciNet  Google Scholar 

  9. Han, X., Rossi, L.F., Shen, C.C.: Autonomous navigation of wireless robot swarms with covert leaders. In: Proceedings of the 1st international Conference on Robot Communication and Coordination, p. 27. IEEE Press (2007)

    Google Scholar 

  10. Hussein, A., Petraki, E., Elsawah, S., Abbass, H.A.: Autonomous swarm shepherding using curriculum-based reinforcement learning. In: AAMAS, pp. 633–641 (2022)

    Google Scholar 

  11. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jung, S.Y., Brown, D.S., Goodrich, M.A.: Shaping couzin-like torus swarms through coordinated mediation. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2013, pp. 1834–1839. IEEE (2013)

    Google Scholar 

  13. Kolling, A., Nunnally, S., Lewis, M.: Towards human control of robot swarms. In: Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-robot Interaction, pp. 89–96. ACM (2012)

    Google Scholar 

  14. MacKay, D.: An example inference task: clustering. In: Information Theory, Inference and Learning Algorithms, pp. 284–292. Cambridge University Press (2003)

    Google Scholar 

  15. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Qiu, Y., Zhan, Y., Jin, Y., Wang, J., Zhang, X.: Sample-efficient multi-agent reinforcement learning with demonstrations for flocking control. arXiv preprint arXiv:2209.08351 (2022)

  17. Qu, S., Abouheaf, M., Gueaieb, W., Spinello, D.: A policy iteration approach for flock motion control. In: 2021 IEEE International Symposium on Robotic and Sensors Environments (ROSE), pp. 1–7. IEEE (2021)

    Google Scholar 

  18. Raj, J., Raghuwaiya, K., Sharma, B., Vanualailai, J.: Motion control of a flock of 1-trailer robots with swarm avoidance. Robotica 39(11), 1926–1951 (2021)

    Article  Google Scholar 

  19. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In: ACM SIGGRAPH Computer Graphics, vol. 21, pp. 25–34. ACM (1987)

    Google Scholar 

  20. Salimi, M., Pasquier, P.: Deep reinforcement learning for flocking control of UAVs in complex environments. In: 2021 6th International Conference on Robotics and Automation Engineering (ICRAE), pp. 344–352. IEEE (2021)

    Google Scholar 

  21. Shrit, O., Filliat, D., Sebag, M.: Iterative learning for model reactive control: Application to autonomous multi-agent control. In: 2021 7th International Conference on Automation, Robotics and Applications (ICARA), pp. 140–146. IEEE (2021)

    Google Scholar 

  22. Su, H., Wang, X., Lin, Z.: Flocking of multi-agents with a virtual leader. IEEE Trans. Autom. Control 54(2), 293–307 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tiwari, R., Jain, P., Butail, S., Baliyarasimhuni, S.P., Goodrich, M.A.: Effect of leader placement on robotic swarm control. In: Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, pp. 1387–1394. AAMAS 2017 (2017)

    Google Scholar 

  24. Walker, P., Amraii, S.A., Lewis, M., Chakraborty, N., Sycara, K.: Control of swarms with multiple leader agents. In: IEEE International Conference on Systems, Man and Cybernetics (SMC), 2014, pp. 3567–3572. IEEE (2014)

    Google Scholar 

  25. Werfel, J., Nagpal, R.: Extended stigmergy in collective construction. IEEE Intell. Syst. 21(2), 20–28 (2006)

    Article  Google Scholar 

  26. Zhang, H., Cheng, J.: Deep reinforcement learning approach for flocking control of multi-agents. In: 2021 40th Chinese Control Conference (CCC), pp. 5002–5007. IEEE (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Hale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hale, J., Dees, A., Garrison, J., Sen, S. (2023). Evaluating Adaptive and Non-adaptive Strategies for Selecting and Orienting Influencer Agents for Effective Flock Control. In: Aydoğan, R., Criado, N., Lang, J., Sanchez-Anguix, V., Serramia, M. (eds) PRIMA 2022: Principles and Practice of Multi-Agent Systems. PRIMA 2022. Lecture Notes in Computer Science(), vol 13753. Springer, Cham. https://doi.org/10.1007/978-3-031-21203-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21203-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21202-4

  • Online ISBN: 978-3-031-21203-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics