Large-Scale Heterogeneous Multi-robot Coverage via Domain Decomposition and Generative Allocation | SpringerLink
Skip to main content

Large-Scale Heterogeneous Multi-robot Coverage via Domain Decomposition and Generative Allocation

  • Conference paper
  • First Online:
Algorithmic Foundations of Robotics XV (WAFR 2022)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 25))

Included in the following conference series:

Abstract

This paper develops a new approach to direct a set of heterogeneous agents, varying in mobility and sensing capabilities, to quickly cover a large region, say for example in the search for victims after a large-scale disaster. Given that time is of the essence, we seek to mitigate computational complexity, which normally grows exponentially as the number of agents increases. We create a new framework which reduces the planning complexity through simultaneously decomposing a target domain into sub-regions, and assigning a team of agents to each sub-region in the target domain, as a way to decompose a large-scale problem into a set of smaller problems. The teams are formed to optimize the coverage of each sub-regions. Doing so requires both the utilization of individual agents’ strengths as well as their collaborative capabilities. We determine the ideal team by introducing a novel evolution-guided generative model based on generative adversarial networks (GANs) that creates allocation plans from the sub-region features in a computationally efficient manner. We validate our framework on a real-world satellite images dataset, and demonstrate that through decomposition and generative allocation, our method has significantly better efficiency and efficacy compared to current centralized multi-robot coverage methods, and is therefore better suited for large-scale time-critical deployment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 32031
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 40039
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 40039
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham, I., Mavrommati, A., Murphey, T.: Data-driven measurement models for active localization in sparse environments. In: Proceedings of Robotics: Science and Systems. Pittsburgh, Pennsylvania (2018)

    Google Scholar 

  2. Agarap, A.F.: Deep learning using rectified linear units (relu) (2018). arXiv:1803.08375

  3. Agarwal, M., Agrawal, N., Sharma, S., Vig, L., Kumar, N.: Parallel multi-objective multi-robot coalition formation. Expert Syst. Appl. 42(21), 7797–7811 (2015)

    Article  Google Scholar 

  4. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)

    Google Scholar 

  5. Ayvali, E., Ansari, A., Wang, L., Simaan, N., Choset, H.: Utility-guided palpation for locating tissue abnormalities. IEEE Robot. Autom. Lett. 2(2), 864–871 (2017)

    Article  Google Scholar 

  6. Ayvali, E., Salman, H., Choset, H.: Ergodic coverage in constrained environments using stochastic trajectory optimization. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5204–5210. IEEE (2017)

    Google Scholar 

  7. Badreldin, M., Hussein, A., Khamis, A.: A comparative study between optimization and market-based approaches to multi-robot task allocation. Adv. Artif. Intell. (16877470) (2013)

    Google Scholar 

  8. Casas, N.: Genetic algorithms for multimodal optimization: a review (2015). arXiv:1508.05342

  9. Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. (CSUR) 45(3), 1–33 (2013)

    Article  MATH  Google Scholar 

  10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  11. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)

    Article  Google Scholar 

  12. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.C., Bengio, Y.: Generative adversarial nets. In: Neural Information Processing Systems (2014)

    Google Scholar 

  13. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  14. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  15. Kantaros, Y., Zavlanos, M.M.: Distributed communication-aware coverage control by mobile sensor networks. Automatica 63, 209–220 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Katoch, S., Chauhan, S.S., Kumar, V.: A review on genetic algorithm: past, present, and future. In: Multimedia Tools and Applications, pp. 1–36 (2020)

    Google Scholar 

  17. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  18. Khamis, A., Hussein, A., Elmogy, A.: Multi-robot task allocation: a review of the state-of-the-art. Coop. Robot. Sens. Netw. 2015, 31–51 (2015)

    Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014). arXiv:1412.6980

  20. Korsah, G.A., Stentz, A., Dias, M.B.: A comprehensive taxonomy for multi-robot task allocation. Int. J. Robot. Res. 32(12), 1495–1512 (2013)

    Article  Google Scholar 

  21. Levina, E., Bickel, P.: The earth mover’s distance is the mallows distance: some insights from statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision, ICCV 2001. vol. 2, pp. 251–256. IEEE (2001)

    Google Scholar 

  22. Li, M., Chen, T., Yao, X.: How to evaluate solutions in pareto-based search-based software engineering? a critical review and methodological guidance. IEEE Trans. Softw. Eng. 1 (2020)

    Google Scholar 

  23. Liu, C., Kroll, A.: A centralized multi-robot task allocation for industrial plant inspection by using a* and genetic algorithms. In: International Conference on Artificial Intelligence and Soft Computing, pp. 466–474. Springer, Berlin (2012)

    Google Scholar 

  24. Liu, H.Y., Chen, J.F.: Multi-robot cooperation coalition formation based on genetic algorithm. In: 2006 International Conference on Machine Learning and Cybernetics, pp. 85–88. IEEE (2006)

    Google Scholar 

  25. Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D.M., Lu, L., Yang, C.: On centroidal Voronoi tessellation-energy smoothness and fast computation. ACM Trans. Graph. (ToG) 28(4), 1–17 (2009)

    Article  Google Scholar 

  26. López-González, A., Campaña, J.M., Martínez, E.H., Contro, P.P.: Multi robot distance based formation using parallel genetic algorithm. Appl. Soft Comput. 86, 105929 (2020)

    Article  Google Scholar 

  27. Mathew, G., Mezić, I.: Metrics for ergodicity and design of ergodic dynamics for multi-agent systems. Phys. D 240(4–5), 432–442 (2011)

    Article  MATH  Google Scholar 

  28. Mavrommati, A., Tzorakoleftherakis, E., Abraham, I., Murphey, T.D.: Real-time area coverage and target localization using receding-horizon ergodic exploration. IEEE Trans. Rob. 34(1), 62–80 (2017)

    Article  Google Scholar 

  29. Miller, L.M., Silverman, Y., MacIver, M.A., Murphey, T.D.: Ergodic exploration of distributed information. IEEE Trans. Rob. 32(1), 36–52 (2015)

    Article  Google Scholar 

  30. Mirza, M., Osindero, S.: Conditional generative adversarial nets (2014). arXiv:1411.1784

  31. Mouradian, C., Sahoo, J., Glitho, R.H., Morrow, M.J., Polakos, P.A.: A coalition formation algorithm for multi-robot task allocation in large-scale natural disasters. In: 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 1909–1914. IEEE (2017)

    Google Scholar 

  32. Pilkington, N., Svetlichnaya, S., Holmes, T.: Github—dronedeploy/ddml-segmentation-benchmark: dronedeploy machine learning segmentation benchmark (2019)

    Google Scholar 

  33. Price, K.V.: Differential evolution. In: Handbook of Optimization, pp. 187–214. Springer, Berlin (2013)

    Google Scholar 

  34. Prorok, A., Hsieh, M.A., Kumar, V.: Fast redistribution of a swarm of heterogeneous robots. In: Proceedings of the 9th EAI International Conference on Bio-Inspired Information and Communications Technologies (Formerly BIONETICS), pp. 249–255. BICT’15 (2016)

    Google Scholar 

  35. Rauniyar, A., Muhuri, P.K.: Multi-robot coalition formation and task allocation using immigrant based adaptive genetic algorithms. In: Computational Intelligence in Emerging Technologies for Engineering Applications, pp. 205–225. Springer, Berlin (2020)

    Google Scholar 

  36. Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation. Artif. Intell. 101(1–2), 165–200 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective evolutionary algorithms: analyzing the state-of-the-art. Evol. Comput. 8(2), 125–147 (2000)

    Article  Google Scholar 

  38. Van Veldhuizen, D.A., Lamont, G.B., et al.: Evolutionary computation and convergence to a pareto front. In: Late Breaking Papers at the Genetic Programming 1998 Conference, pp. 221–228. Citeseer (1998)

    Google Scholar 

  39. Wang, J., Gu, Y., Li, X.: Multi-robot task allocation based on ant colony algorithm. J. Comput. 7(9), 2160–2167 (2012)

    Article  Google Scholar 

  40. Wei, C., Ji, Z., Cai, B.: Particle swarm optimization for cooperative multi-robot task allocation: a multi-objective approach. IEEE Robot. Autom. Lett. 5(2), 2530–2537 (2020)

    Article  Google Scholar 

  41. Xu, B., Yang, Z., Ge, Y., Peng, Z.: Coalition formation in multi-agent systems based on improved particle swarm optimization algorithm. Int. J. Hybrid Inf. Technol. 8(3), 1–8 (2015)

    Google Scholar 

  42. Yusoff, Y., Ngadiman, M.S., Zain, A.M.: Overview of NSGA-II for optimizing machining process parameters. Procedia Eng. 15, 3978–3983 (2011)

    Article  Google Scholar 

  43. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaheng Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, J., Coffin, H., Whitman, J., Travers, M., Choset, H. (2023). Large-Scale Heterogeneous Multi-robot Coverage via Domain Decomposition and Generative Allocation. In: LaValle, S.M., O’Kane, J.M., Otte, M., Sadigh, D., Tokekar, P. (eds) Algorithmic Foundations of Robotics XV. WAFR 2022. Springer Proceedings in Advanced Robotics, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-031-21090-7_4

Download citation

Publish with us

Policies and ethics