Abstract
In nature, cells combine into different structures to perform the task at hand. Taking inspiration from cells, we present a proof-of-concept and a prototype of a soft modular cellbot composed of simple spherical elements (cells). Locomotion is achieved by establishing and exploiting frictional asymmetries in the interaction of cells and the terrain. We explore the effect of friction coefficient, actuation forcing function, number of cells and axial robot orientation on robot movement, using both simulation model and physical robot. The robot was built using multiple inflatable balls to represent cells connected by linear actuators. The structure, softness, compliance and the ability to deflate the structure for transporting are designed to enhance robustness, fault tolerance and cost effectiveness for disaster affected areas, nuclear sites, and outer space applications. The trend of displacement versus number of cells varies for different friction values. For a surface with mid-to-high static and kinetic friction coefficient, increasing the number of cells stabilises the robot on the ground, increasing the necessary frictional asymmetry and reducing slipping. This helps the designer exploit friction conditions by specifying the robot with suitable structural materials. Understanding the effect of these parameters will help to maximise robot movement by choosing an optimal configuration with respect to orientation or by merging or splitting the cellbot, based on the frictional properties of terrain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bruce, J., et al.: Superball: exploring tensegrities for planetary probes. In: 12th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS) (2014)
Usevitch, N., Hammond, Z., Schwager, M., Okamura, A., Hawkes, E., Follmer, S.: An untethered isoperimetric soft robot. Sci. Robot. 5(40), 1–36 (2020)
Zhang, F., Yang, Yu., Wang, Q., Zeng, X., Niu, H.: A terrain-adaptive robot prototype designed for bumpy-surface exploration. Mech. Mach. Theory 141, 213–225 (2019)
Post, M.A., Yan, X.-T., Letier, P.: Modularity for the future in space robotics: a review. Acta Astronautica 189, 530–547 (2021)
Carrillo-Zapata, D., Sharpe, J., Winfield, A.F.T., Giuggioli, L., Hauert, S.: Toward controllable morphogenesis in large robot swarms. IEEE Robot. Autom. Lett. 4(4), 3386–3393 (2019)
Suzuki, R., et al.: ShapeBots: shape-changing swarm robots. In: Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, pp. 493–505 (2019)
Auerbach, J.E., Bongard, J.C.: Environmental influence on the evolution of morphological complexity in machines. PLoS Comput. Biol. 10(1), e1003399 (2014)
Kano, T., Yoshizawa, R., Ishiguro, A.: Tegotae-based decentralised control scheme for autonomous gait transition of snake-like robots. Bioinspir. Biomimet. 12(4), 046009 (2017)
Ogawa, J.: Evolutionary multi-objective optimization for evolving soft robots in different environments. In: Compagnoni, A., Casey, W., Cai, Y., Mishra, B. (eds.) BICT 2019. LNICST, vol. 289, pp. 112–131. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24202-2_9
Hawkes, E.W., Blumenschein, L.H., Greer, J.D., Okamura, A.M.: A soft robot that navigates its environment through growth. Sci. Robot. 2(8), eaan3028 (2017)
Ge Joey, Z., Calderón, A.A., Chang, L., Pérez-Arancibia, N.O.: An earthworm-inspired friction-controlled soft robot capable of bidirectional locomotion. Bioinspir. Biomimet. 14(3), 036004 (2019)
Golestanian, R., Ajdari, A.: Analytic results for the three-sphere swimmer at low Reynolds number. Phys. Rev. E 77, 036308 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bansal, R., Hauser, H., Rossiter, J. (2022). A Scalable Soft Robotic Cellbot. In: Hunt, A., et al. Biomimetic and Biohybrid Systems. Living Machines 2022. Lecture Notes in Computer Science(), vol 13548. Springer, Cham. https://doi.org/10.1007/978-3-031-20470-8_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-20470-8_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20469-2
Online ISBN: 978-3-031-20470-8
eBook Packages: Computer ScienceComputer Science (R0)