Artificial Neural Networks Applied to Natural Language Processing in Academic Texts | SpringerLink
Skip to main content

Artificial Neural Networks Applied to Natural Language Processing in Academic Texts

  • Conference paper
  • First Online:
Advanced Research in Technologies, Information, Innovation and Sustainability (ARTIIS 2022)

Abstract

In the last decade, Artificial Intelligence (AI) has become lead on the field of information generation and processing tasks through the emergence of Machine Learning (ML), as well as the data specialist mentions Machine Learning is a master of pattern recognition, and is capable of transform a data sample into a computer program capable of drawing inferences from new data sets for which it has not been previously trained, based on artificial neural networks (ANN) processing in academic texts, which are used to identify patterns and classify different types of information, currently treated as Deep Learning (DL) which is a subset of Machine Learning, this algorithm tries to imitate the human brain by continuously analyzing data with a given logical structure, which has led to its applicability to different fields such as robotics, voice processing, artificial vision, natural language processing (NLP), with the intention to provide computer systems with the ability to learn. Natural language processing has traditionally been a complex and non-trivial task in algorithm design. Making use of AI, new thresholds are being reached in the state of the art of different problems and with constant advances in the models in use, they are being reached faster and faster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sancho Escrivá, J.V,: Utilidad de las nuevas tecnologías en la mejora de la comunicación médico-paciente en el área de salud mental: aportaciones de la inteligencia artificial y el procesamiento del lenguaje natural. Universitat Jaume I (2021)

    Google Scholar 

  2. Beltrán, N.C.B., Mojica, E.C.R.: Procesamiento del lenguaje natural (PLN)-GPT-3.: applicación en la Ingeniería de Software. Tecnol. Investig. y Acad. 8(1), 39–49 (2020)

    Google Scholar 

  3. Masip, P.,  Aran-Ramspott, S., Ruiz-Caballero,  C.,  Suau, J.,  Almenar, E.,  Puertas-Graell, D.: Onsumo informativo y cobertura mediática durante el confinamiento por el Covid-19: sobreinformación, sesgo ideológico y sensacionalismo. El Prof. la Inf. 29(3) (2020)

    Google Scholar 

  4. OpenAI.: No Title (2022)

    Google Scholar 

  5. Ho, T.K., Luo, Y.-F., Guido, R.C.: Explainability of Methods for Critical Information Extraction From Clinical Documents: A survey of representative works. IEEE Signal Process. Mag. 39(4), 96–106 (2022)

    Google Scholar 

  6. Márquez, B.Y., Magdaleno-Palencia, J.S., Alanís-Garza, A., Romero-Alvarado, K., Gutiérrez, R., Ibarra, M.: Biomechanical Analysis of Human Gait with Inertial Sensors Using Neural Networks. In: Chen, Y.-W., Zimmermann, A., Howlett, R.J., Jain, L.C. (eds.) Innovation in Medicine and Healthcare Systems, and Multimedia. SIST, vol. 145, pp. 213–221. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-8566-7_21

    Chapter  Google Scholar 

  7. Zhou, M., Duan, N.,  Liu, S.,  Shum, H.Y.: Progress in neural NLP. Model. Learn. Reason. Eng. 6(3), 275–290.” 2020

    Google Scholar 

  8. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)

    Article  Google Scholar 

  9.  Chomsky, N.: Syntactic structures, 2nd edn. Berlin & New York: Mouton de Gruyter  (2002)

    Google Scholar 

  10.  Khyani, D., BS, S.: An Interpretation of Lemmatization and Stemming in Natural Language Processing. Shanghai Ligong Daxue Xuebao/J. Univ. Shanghai Sci. Technol.  22 350–357 (2021)

    Google Scholar 

  11. Josh, V.: Application Research on Latent Semantic Analysis forInformation Retrieval (2019)

    Google Scholar 

  12. Waltz, D.L.: Semantic Structures (RLE Linguistics B: Grammar). In: Advances in Natural Language Processing. Routledge (2014)

    Google Scholar 

  13.  Khurana, D.,  Koli, A., Khatter, K., Singh, S.: Natural language processing: State of the art, current trends and challenges. Multimed. Tools Appl. 1–32 (2022)

    Google Scholar 

  14.  Sarzhan, N.: Transformers and their applications in natural language processing.

    Google Scholar 

  15. Tas, O., Kiyani, F.: A survey automatic text summarization. Press. Procedia 5(1), 205–213 (2007)

    Google Scholar 

  16. Chiche, A., Yitagesu, B.: Part of speech tagging: a systematic review of deep learning and machine learning approaches. Journal of Big Data 9(1), 1–25 (2022). https://doi.org/10.1186/s40537-022-00561-y

    Article  Google Scholar 

  17.  Alonso Hernández, Á.J.: Deep learning aplicado al resumen de texto (2017)

    Google Scholar 

  18. Cadence C.N.C.  et al.: Competition and Consumer Protection in the 21st Century Hearings, Project Number P181201 BSA| The Software Alliance Comments on Topic 2: Competition and Consumer Protection Issues in Communication, Information, and Media Technology Networks 

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogart Yail Marquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marquez, B.Y., Alanis, A., Magdaleno-Palencia, J.S., Quezada, A. (2022). Artificial Neural Networks Applied to Natural Language Processing in Academic Texts. In: Guarda, T., Portela, F., Augusto, M.F. (eds) Advanced Research in Technologies, Information, Innovation and Sustainability. ARTIIS 2022. Communications in Computer and Information Science, vol 1675. Springer, Cham. https://doi.org/10.1007/978-3-031-20319-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20319-0_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20318-3

  • Online ISBN: 978-3-031-20319-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics