Abstract
The objective of this study is to control the motion of a passive particle advected by N point vortices in a sphere. The square of the \(L^2\) norm of control, necessary for the system to evolve from a starting point to an end point in an a priori fixed time, must be minimized. If the motion is generated by a single vortex (\(N = 1\)), we show that the system is controllable. The problem is also solved by a direct approach, where the control problem is transformed into a nonlinear optimization problem that is solved numerically. In the case of one (\(N = 1\)), two (\(N = 2\)), or three (\(N = 3\)) point vortices, the numerical results show the existence of near/quasi-optimal control.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aref, H.: Motion of three vortices. Phys. Fluids 22(3), 393–400 (1979)
Aref, H.: Point vortex dynamics: a classical mathematics playground. J. Math. Phys. 48(6), 065401 (2007). https://doi.org/10.1063/1.2425103
Aref, H.: Relative equilibria of point vortices and the fundamental theorem of algebra. Proc. Roy. Soc. Math. Phys. Eng. Sci. 467(2132), 2168–2184 (2011)
Babiano, A., Boffetta, G., Provenzale, A., Vulpiani, A.: Chaotic advection in point vortex models and two-dimensional turbulence. Phys. Fluids 6(7), 2465–2474 (1994)
Balsa, C., Gama, S.: A numerical algorithm for optimal control problems with a viscous point vortex. In: Palma, L.B., Neves-Silva, R., Gomes, L. (eds). CONTROLO 2022. LNCS, vol 930. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10047-5_64
Balsa, C., Gama, S.M.: The control of the displacement of a passive particle in a point vortex flow. J. Comput. Methods Sci. Eng. 21(5), 1215–1229 (2021). https://doi.org/10.3233/jcm-204710
Bogomolov, V.A.: Dynamics of vorticity at a sphere. Fluid Dyn. 12, 863–870 (1977)
Bonnard, B., Cots, O., Wembe, B.: A Zermelo navigation problem with a vortex singularity. ESAIM: Control Optim. Calc. Var. 27, S10 (2021)
Chorin, A.: Vortex methods. Tech. rep. Lawrence Berkeley Lab. CA (United States) (1993)
Chorin, A.J.: Vorticity and turbulence, vol. 103. Springer Science & Business Media (2013). https://doi.org/10.1007/978-1-4419-8728-0
Conte, S.D., De Boor, C.: Elementary numerical analysis: an algorithmic approach. SIAM (2017)
Crowdy, D.: Point vortex motion on the surface of a sphere with impenetrable boundaries. Phys. Fluids 18(3), 036602 (2006)
Dritschel, D.G., Boatto, S.: The motion of point vortices on closed surfaces. Proc. R. Soc. A. 471, 20140890 (2015)
Helmholtz, H.: Über integrale der hydrodynamischen gleichungen, welche den wirbelbewegungen entsprechen. J. für die reine und angew. Math. 55, 25–55 (1858). http://eudml.org/doc/147720
Hwang, S., Kim, S.C.: Point vortices on hyperbolic sphere. J. Geom. Phys. 59(4), 475–488 (2009). https://doi.org/10.1016/j.geomphys.2009.01.003
Kimura, Y., Okamoto, H.: Vortex motion on a sphere. J. Phys. Soc. Jpn. 56(12), 4203–4206 (1987). https://doi.org/10.1143/JPSJ.56.4203
Kirchhoff, G.R.: Vorlesungenbër mathematische physik. Mechanik (1876)
Laurent-Polz, F.: Point vortices on a rotating sphere. Regul. Chaotic Dyn. 10(1), 39–58 (2005)
Marques, G., Grilo, T., Gama, S., Pereira, F.L.: Optimal control of a passive particle advected by a point vortex. In: Guarda, T., Portela, F., Santos, M.F. (eds.) ARTIIS 2021. CCIS, vol. 1485, pp. 512–523. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90241-4_39
Marques, G., Gama, S., Pereira, F.L.: Optimal control of a passive particle advected by a Lamb-Oseen (viscous) vortex. Computation 10(6), 87 (2022)
Martin, D.: Two-dimensional point vortex dynamics in bounded domains: Global existence for almost every initial data. SIAM J. Math. Anal. 54(1), 79–113 (2022). https://doi.org/10.1137/21M1413213
MathWorks: Matlab Optimization Toolbox: User’s Guide (R2020a). The MathWorks Inc, Natick, Massachusetts, US (2020)
Mokhov, I.I., Chefranov, S.G., Chefranov, A.G.: Point vortices dynamics on a rotating sphere and modeling of global atmospheric vortices interaction. Phys. Fluids 32(10), 106605 (2020)
Nava-Gaxiola, C., Montaldi, J.: Point vortices on the hyperbolic plane. J. Math. Phys. 55, 102702 (2014). https://doi.org/10.1063/1.4897210
Newton, P.K.: The N-vortex problem: analytical techniques, vol. 145. Springer Science & Business Media (2001). https://doi.org/10.1007/978-1-4684-9290-3
Newton, P.K.: The n-vortex problem on a sphere: geophysical mechanisms that break integrability. Theoret. Comput. Fluid Dyn. 24(1), 137–149 (2010)
Ragazzo, C.: The motion of a vortex on a closed surface of constant negative curvature. Proc. Roy. Soc. Math. Phys. Eng. Sci. 473, 20170447 (2017). https://doi.org/10.1098/rspa.2017.0447
Saffman, P.G.: Vortex dynamics. Cambridge University Press (1995)
Stremler, M.A.: On relative equilibria and integrable dynamics of point vortices in periodic domains. Theoret. Comput. Fluid Dyn. 24(1–4), 25–37 (2010). https://doi.org/10.1007/s00162-009-0156-z
Lord, K., Thomson, W.: On vortex motion. Trans. R. Soc. Edin 25, 217–260 (1869)
Umeki, M.: Clustering analysis of periodic point vortices with the \(l\) function. J. Phys. Soc. Jpn. 76, 043401 (2006). https://doi.org/10.1143/JPSJ.76.043401
Umeki, M.: Point process analysis of vortices in a periodic box. Theoret. Appl. Mech. Jpn. 56, 259–265 (2007). https://doi.org/10.11345/nctam.56.259
Zermelo, E.: Hydrodynamishe untersuchungen über die wirbelbewegungen in einer kugelfläche. Math. Phys. 47, 201 (1902)
Acknowledgements
Carlos Balsa was partially supported by CeDRI which is financed by FCT within the Project Scope: UIDB/05757/2020.
Sílvio Gama was partially supported by (i) CMUP, member of LASI, which is financed by national funds through FCT - Fundação para a Ciência e a Tecnologia, I.P., under the project with reference UIDB/00144/2020, and (ii) project SNAP NORTE- 01–0145–FEDER–000085, co-financed by the European Regional Development Fund (ERDF) through the North Portugal Regional Operational Programme (NORTE2020) under Portugal 2020 Partnership Agreement.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Balsa, C., Gama, S. (2022). A Control Problem with Passive Particles Driven by Point Vortices on the Sphere. In: Guarda, T., Portela, F., Augusto, M.F. (eds) Advanced Research in Technologies, Information, Innovation and Sustainability. ARTIIS 2022. Communications in Computer and Information Science, vol 1675. Springer, Cham. https://doi.org/10.1007/978-3-031-20319-0_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-20319-0_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20318-3
Online ISBN: 978-3-031-20319-0
eBook Packages: Computer ScienceComputer Science (R0)