A Control Problem with Passive Particles Driven by Point Vortices on the Sphere | SpringerLink
Skip to main content

A Control Problem with Passive Particles Driven by Point Vortices on the Sphere

  • Conference paper
  • First Online:
Advanced Research in Technologies, Information, Innovation and Sustainability (ARTIIS 2022)

Abstract

The objective of this study is to control the motion of a passive particle advected by N point vortices in a sphere. The square of the \(L^2\) norm of control, necessary for the system to evolve from a starting point to an end point in an a priori fixed time, must be minimized. If the motion is generated by a single vortex (\(N = 1\)), we show that the system is controllable. The problem is also solved by a direct approach, where the control problem is transformed into a nonlinear optimization problem that is solved numerically. In the case of one (\(N = 1\)), two (\(N = 2\)), or three (\(N = 3\)) point vortices, the numerical results show the existence of near/quasi-optimal control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aref, H.: Motion of three vortices. Phys. Fluids 22(3), 393–400 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aref, H.: Point vortex dynamics: a classical mathematics playground. J. Math. Phys. 48(6), 065401 (2007). https://doi.org/10.1063/1.2425103

  3. Aref, H.: Relative equilibria of point vortices and the fundamental theorem of algebra. Proc. Roy. Soc. Math. Phys. Eng. Sci. 467(2132), 2168–2184 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Babiano, A., Boffetta, G., Provenzale, A., Vulpiani, A.: Chaotic advection in point vortex models and two-dimensional turbulence. Phys. Fluids 6(7), 2465–2474 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balsa, C., Gama, S.: A numerical algorithm for optimal control problems with a viscous point vortex. In: Palma, L.B., Neves-Silva, R., Gomes, L. (eds). CONTROLO 2022. LNCS, vol 930. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10047-5_64

  6. Balsa, C., Gama, S.M.: The control of the displacement of a passive particle in a point vortex flow. J. Comput. Methods Sci. Eng. 21(5), 1215–1229 (2021). https://doi.org/10.3233/jcm-204710

    Article  Google Scholar 

  7. Bogomolov, V.A.: Dynamics of vorticity at a sphere. Fluid Dyn. 12, 863–870 (1977)

    Article  MATH  Google Scholar 

  8. Bonnard, B., Cots, O., Wembe, B.: A Zermelo navigation problem with a vortex singularity. ESAIM: Control Optim. Calc. Var. 27, S10 (2021)

    Google Scholar 

  9. Chorin, A.: Vortex methods. Tech. rep. Lawrence Berkeley Lab. CA (United States) (1993)

    Google Scholar 

  10. Chorin, A.J.: Vorticity and turbulence, vol. 103. Springer Science & Business Media (2013). https://doi.org/10.1007/978-1-4419-8728-0

  11. Conte, S.D., De Boor, C.: Elementary numerical analysis: an algorithmic approach. SIAM (2017)

    Google Scholar 

  12. Crowdy, D.: Point vortex motion on the surface of a sphere with impenetrable boundaries. Phys. Fluids 18(3), 036602 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dritschel, D.G., Boatto, S.: The motion of point vortices on closed surfaces. Proc. R. Soc. A. 471, 20140890 (2015)

    Google Scholar 

  14. Helmholtz, H.: Über integrale der hydrodynamischen gleichungen, welche den wirbelbewegungen entsprechen. J. für die reine und angew. Math. 55, 25–55 (1858). http://eudml.org/doc/147720

  15. Hwang, S., Kim, S.C.: Point vortices on hyperbolic sphere. J. Geom. Phys. 59(4), 475–488 (2009). https://doi.org/10.1016/j.geomphys.2009.01.003

    Article  MathSciNet  MATH  Google Scholar 

  16. Kimura, Y., Okamoto, H.: Vortex motion on a sphere. J. Phys. Soc. Jpn. 56(12), 4203–4206 (1987). https://doi.org/10.1143/JPSJ.56.4203

  17. Kirchhoff, G.R.: Vorlesungenbër mathematische physik. Mechanik (1876)

    Google Scholar 

  18. Laurent-Polz, F.: Point vortices on a rotating sphere. Regul. Chaotic Dyn. 10(1), 39–58 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Marques, G., Grilo, T., Gama, S., Pereira, F.L.: Optimal control of a passive particle advected by a point vortex. In: Guarda, T., Portela, F., Santos, M.F. (eds.) ARTIIS 2021. CCIS, vol. 1485, pp. 512–523. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90241-4_39

    Chapter  Google Scholar 

  20. Marques, G., Gama, S., Pereira, F.L.: Optimal control of a passive particle advected by a Lamb-Oseen (viscous) vortex. Computation 10(6), 87 (2022)

    Article  Google Scholar 

  21. Martin, D.: Two-dimensional point vortex dynamics in bounded domains: Global existence for almost every initial data. SIAM J. Math. Anal. 54(1), 79–113 (2022). https://doi.org/10.1137/21M1413213

    Article  MathSciNet  MATH  Google Scholar 

  22. MathWorks: Matlab Optimization Toolbox: User’s Guide (R2020a). The MathWorks Inc, Natick, Massachusetts, US (2020)

    Google Scholar 

  23. Mokhov, I.I., Chefranov, S.G., Chefranov, A.G.: Point vortices dynamics on a rotating sphere and modeling of global atmospheric vortices interaction. Phys. Fluids 32(10), 106605 (2020)

    Article  Google Scholar 

  24. Nava-Gaxiola, C., Montaldi, J.: Point vortices on the hyperbolic plane. J. Math. Phys. 55, 102702 (2014). https://doi.org/10.1063/1.4897210

  25. Newton, P.K.: The N-vortex problem: analytical techniques, vol. 145. Springer Science & Business Media (2001). https://doi.org/10.1007/978-1-4684-9290-3

  26. Newton, P.K.: The n-vortex problem on a sphere: geophysical mechanisms that break integrability. Theoret. Comput. Fluid Dyn. 24(1), 137–149 (2010)

    Article  MATH  Google Scholar 

  27. Ragazzo, C.: The motion of a vortex on a closed surface of constant negative curvature. Proc. Roy. Soc. Math. Phys. Eng. Sci. 473, 20170447 (2017). https://doi.org/10.1098/rspa.2017.0447

  28. Saffman, P.G.: Vortex dynamics. Cambridge University Press (1995)

    Google Scholar 

  29. Stremler, M.A.: On relative equilibria and integrable dynamics of point vortices in periodic domains. Theoret. Comput. Fluid Dyn. 24(1–4), 25–37 (2010). https://doi.org/10.1007/s00162-009-0156-z

    Article  MATH  Google Scholar 

  30. Lord, K., Thomson, W.: On vortex motion. Trans. R. Soc. Edin 25, 217–260 (1869)

    Google Scholar 

  31. Umeki, M.: Clustering analysis of periodic point vortices with the \(l\) function. J. Phys. Soc. Jpn. 76, 043401 (2006). https://doi.org/10.1143/JPSJ.76.043401

  32. Umeki, M.: Point process analysis of vortices in a periodic box. Theoret. Appl. Mech. Jpn. 56, 259–265 (2007). https://doi.org/10.11345/nctam.56.259

  33. Zermelo, E.: Hydrodynamishe untersuchungen über die wirbelbewegungen in einer kugelfläche. Math. Phys. 47, 201 (1902)

    MATH  Google Scholar 

Download references

Acknowledgements

Carlos Balsa was partially supported by CeDRI which is financed by FCT within the Project Scope: UIDB/05757/2020.

Sílvio Gama was partially supported by (i) CMUP, member of LASI, which is financed by national funds through FCT - Fundação para a Ciência e a Tecnologia, I.P., under the project with reference UIDB/00144/2020, and (ii) project SNAP NORTE- 01–0145–FEDER–000085, co-financed by the European Regional Development Fund (ERDF) through the North Portugal Regional Operational Programme (NORTE2020) under Portugal 2020 Partnership Agreement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Balsa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balsa, C., Gama, S. (2022). A Control Problem with Passive Particles Driven by Point Vortices on the Sphere. In: Guarda, T., Portela, F., Augusto, M.F. (eds) Advanced Research in Technologies, Information, Innovation and Sustainability. ARTIIS 2022. Communications in Computer and Information Science, vol 1675. Springer, Cham. https://doi.org/10.1007/978-3-031-20319-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20319-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20318-3

  • Online ISBN: 978-3-031-20319-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics