EdgeViTs: Competing Light-Weight CNNs on Mobile Devices with Vision Transformers | SpringerLink
Skip to main content

EdgeViTs: Competing Light-Weight CNNs on Mobile Devices with Vision Transformers

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13671))

Included in the following conference series:

Abstract

Self-attention based models such as vision transformers (ViTs) have emerged as a very competitive architecture alternative to convolutional neural networks (CNNs) in computer vision. Despite increasingly stronger variants with ever higher recognition accuracies, due to the quadratic complexity of self-attention, existing ViTs are typically demanding in computation and model size. Although several successful design choices (e.g., the convolutions and hierarchical multi-stage structure) of prior CNNs have been reintroduced into recent ViTs, they are still not sufficient to meet the limited resource requirements of mobile devices. This motivates a very recent attempt to develop light ViTs based on the state-of-the-art MobileNet-v2, but still leaves a performance gap behind. In this work, pushing further along this under-studied direction we introduce EdgeViTs, a new family of light-weight ViTs that, for the first time, enable attention based vision models to compete with the best light-weight CNNs in the tradeoff between accuracy and on-device efficiency. This is realized by introducing a highly cost-effective local-global-local (LGL) information exchange bottleneck based on optimal integration of self-attention and convolutions. For device-dedicated evaluation, rather than relying on inaccurate proxies like the number of FLOPs or parameters, we adopt a practical approach of focusing directly on on-device latency and, for the first time, energy efficiency. Extensive experiments on image classification, object detection and semantic segmentation validate high efficiency of our EdgeViTs when compared to the state-of-the-art efficient CNNs and ViTs in terms of accuracy-efficiency tradeoff on mobile hardware. Specifically, we show that our models are Pareto-optimal when both accuracy-latency and accuracy-energy tradeoffs are considered, achieving strict dominance over other ViTs in almost all cases and competing with the most efficient CNNs. Code is available at https://github.com/saic-fi/edgevit.

J. Pan—Work done during an internship at Samsung AI Cambridge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Almeida, M., Laskaridis, S., Mehrotra, A., Dudziak, L., Leontiadis, I., Lane, N.D.: Smart at what cost? Characterising mobile deep neural networks in the wild. In: ACM Internet Measurement Conference (2021)

    Google Scholar 

  2. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  3. Berman, M., Pishchulin, L., Xu, N., Blaschko, M.B., Medioni, G.: AOWS: adaptive and optimal network width search with latency constraints. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  4. Bulat, A., Perez Rua, J.M., Sudhakaran, S., Martinez, B., Tzimiropoulos, G.: Space-time mixing attention for video transformer. In: Advances on Neural Information Processing Systems (2021)

    Google Scholar 

  5. Bulat, A., Tzimiropoulos, G.: Bit-Mixer: Mixed-precision networks with runtime bit-width selection. In: IEEE International Conference on Computer Vision (2021)

    Google Scholar 

  6. Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., Liu, Z.: Dynamic convolution: attention over convolution kernels. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  7. Chu, X., et al.: Twins: revisiting the design of spatial attention in vision transformers. In: Advances on Neural Information Processing Systems (2021)

    Google Scholar 

  8. Chu, X., et al.: Conditional positional encodings for vision transformers. arXiv preprint arXiv:2102.10882 (2021)

  9. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: Transformers for image recognition at scale. In: International Conference on Learning Representations (2021)

    Google Scholar 

  10. Dudziak, L., Chau, T., Abdelfattah, M.S., Lee, R., Kim, H., Lane, N.D.: BRP-NAS: prediction-based NAS using GCNs. In: Advances on Neural Information Processing Systems (2020)

    Google Scholar 

  11. Fan, H., et al.: Multiscale vision transformers. In: IEEE International Conference on Computer Vision (2021)

    Google Scholar 

  12. Fayyaz, M., et al.: ATS: adaptive token sampling for efficient vision transformers. arXiv preprint arXiv:2111.15667 (2021)

  13. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional sequence to sequence learning. In: International Conference on Machine Learning (2017)

    Google Scholar 

  14. Graham, B., et al.: LeViT: a vision transformer in convnet’s clothing for faster inference. In: IEEE International Conference on Computer Vision (2021)

    Google Scholar 

  15. Han, K., Xiao, A., Wu, E., Guo, J., Xu, C., Wang, Y.: Transformer in transformer. In: Advances on Neural Information Processing Systems (2021)

    Google Scholar 

  16. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural network with pruning, trained quantization and Huffman coding. In: International Conference on Learning Representations (2016)

    Google Scholar 

  17. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: IEEE Conference on Computer Vision and Pattern Recognition (2022)

    Google Scholar 

  18. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  20. Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs). arXiv preprint arXiv:1606.08415 (2016)

  21. Howard, A., et al.: Searching for MobileNetV3. In: IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  22. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  23. Jacob, B., et al.: Quantization and training of neural networks for efficient integer-arithmetic-only inference. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  24. Kirillov, A., Girshick, R., He, K., Dollár, P.: Panoptic feature pyramid networks. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  25. Li, K., et al.: UniFormer: unified transformer for efficient spatial-temporal representation learning. In: International Conference on Learning Representations (2022)

    Google Scholar 

  26. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  27. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  28. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  29. Liu, Y., Sangineto, E., Bi, W., Sebe, N., Lepri, B., De Nadai, M.: Efficient training of visual transformers with small datasets. In: Advances on Neural Information Processing Systems (2021)

    Google Scholar 

  30. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: IEEE International Conference on Computer Vision (2021)

    Google Scholar 

  31. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolutional networks through network slimming. In: IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  32. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  33. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. In: International Conference on Learning Representations (2017)

    Google Scholar 

  34. Lu, J., et al.: SOFT: softmax-free transformer with linear complexity. In: Advances on Neural Information Processing Systems (2021)

    Google Scholar 

  35. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  36. Mehta, S., Rastegari, M.: MobileViT: light-weight, general-purpose, and mobile-friendly vision transformer. In: International Conference on Learning Representations (2022)

    Google Scholar 

  37. Pan, B., Jiang, Y., Panda, R., Wang, Z., Feris, R., Oliva, A.: IA-RED\({}^{\text{2}}\): Interpretability-aware redundancy reduction for vision transformers. In: Advances on Neural Information Processing Systems (2021)

    Google Scholar 

  38. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances on Neural Information Processing Systems (2019)

    Google Scholar 

  39. Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollár, P.: Designing network design spaces. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  40. Rao, Y., Zhao, W., Liu, B., Lu, J., Zhou, J., Hsieh, C.J.: DynamicViT: efficient vision transformers with dynamic token sparsification. In: Advances on Neural Information Processing Systems (2021)

    Google Scholar 

  41. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  42. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  43. Shaw, P., Uszkoreit, J., Vaswani, A.: Self-attention with relative position representations. In: North American Chapter of the Association for Computational Linguistics (2018)

    Google Scholar 

  44. Srinivas, A., Lin, T.Y., Parmar, N., Shlens, J., Abbeel, P., Vaswani, A.: Bottleneck transformers for visual recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  45. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  46. Tan, M., et al.: MnasNet: platform-aware neural architecture search for mobile. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  47. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning (2019)

    Google Scholar 

  48. Tan, M., Le, Q.: EfficientNetV2: smaller models and faster training. In: International Conference on Machine Learning (2021)

    Google Scholar 

  49. Tan, M., Le, Q.V.: MixConv: mixed depthwise convolutional kernels. In: British Machine Vision Conference (2019)

    Google Scholar 

  50. Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  51. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning (2021)

    Google Scholar 

  52. Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G., Jégou, H.: Going deeper with image transformers. arXiv preprint arXiv:2103.17239 (2021)

  53. Wang, S., Li, B., Khabsa, M., Fang, H., Ma, H.: Linformer: self-attention with linear complexity. arXiv preprint arXiv:2006.04768 (2020)

  54. Wang, W., et al.: Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. In: IEEE International Conference on Computer Vision (2021)

    Google Scholar 

  55. Wang, W., et al.: PVTv2: improved baselines with pyramid vision transformer. Comput. Vis. Media 8, 415–424 (2022)

    Article  Google Scholar 

  56. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep neural networks. In: Advances on Neural Information Processing Systems (2016)

    Google Scholar 

  57. Wu, H., et al.: CvT: introducing convolutions to vision transformers. In: IEEE International Conference on Computer Vision (2021)

    Google Scholar 

  58. Xiao, T., Singh, M., Mintun, E., Darrell, T., Dollár, P., Girshick, R.: Early convolutions help transformers see better. In: Advances on Neural Information Processing Systems (2021)

    Google Scholar 

  59. Xiong, Y., et al.: Nyströmformer: a nyström-based algorithm for approximating self-attention. In: AAAI Conference on Artificial Intelligence (2021)

    Google Scholar 

  60. Xu, Y., et al.: Evo-ViT: slow-fast token evolution for dynamic vision transformer. In: AAAI Conference on Artificial Intelligence (2022)

    Google Scholar 

  61. Yang, B., Bender, G., Le, Q.V., Ngiam, J.: CondConv: conditionally parameterized convolutions for efficient inference. In: Advances on Neural Information Processing Systems (2019)

    Google Scholar 

  62. Yuan, L., et al.: Tokens-to-token ViT: training vision transformers from scratch on ImageNet. In: IEEE International Conference on Computer Vision (2021)

    Google Scholar 

  63. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  64. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ADE20K dataset. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  65. Zhou, D., et al.: DeepViT: towards deeper vision transformer. arXiv preprint arXiv:2103.11886 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brais Martinez .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1017 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, J. et al. (2022). EdgeViTs: Competing Light-Weight CNNs on Mobile Devices with Vision Transformers. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13671. Springer, Cham. https://doi.org/10.1007/978-3-031-20083-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20083-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20082-3

  • Online ISBN: 978-3-031-20083-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics