Abstract
Current object detection systems and benchmarks typically handle a limited number of categories, up to about a thousand categories. This paper scales the number of categories for object detection systems and benchmarks up to 21,000, by leveraging existing object detection and image classification data. Unlike previous efforts that usually transfer knowledge from base detectors to image classification data, we propose to rely more on a reverse information flow from a base image classifier to object detection data. In this framework, the large-vocabulary classification capability is first learnt thoroughly using only the image classification data. In this step, the image classification problem is reformulated as a special configuration of object detection that treats the entire image as a special RoI. Then, a simple multi-task learning approach is used to join the image classification and object detection data, with the backbone and the RoI classification branch shared between two tasks. This two-stage approach, though very simple without a sophisticated process such as multi-instance learning (MIL) to generate pseudo labels for object proposals on the image classification data, performs rather strongly that it surpasses previous large-vocabulary object detection systems on a standard evaluation protocol of tailored LVIS.
Considering that the tailored LVIS evaluation only accounts for a few hundred novel object categories, we present a new evaluation benchmark that assesses the detection of all 21,841 object classes in the ImageNet-21K dataset. The baseline approach and evaluation benchmark will be publicly available at https://github.com/SwinTransformer/Simple-21K-Detection. We hope these would ease future research on large-vocabulary object detection.
Equal Contribution. The work is done when Yutong Lin and Chen Li are interns at MSRA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bansal, A., Sikka, K., Sharma, G., Chellappa, R., Divakaran, A.: Zero-shot object detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 384–400 (2018)
Bilen, H., Vedaldi, A.: Weakly supervised deep detection networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2846–2854 (2016)
Choe, J., Shim, H.: Attention-based dropout layer for weakly supervised object localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: RandAugment: practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 702–703 (2020)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Deselaers, T., Alexe, B., Ferrari, V.: Weakly supervised localization and learning with generic knowledge. Int. J. Comput. Vis. 100(3), 275–293 (2012). https://doi.org/10.1007/s11263-012-0538-3
Dong, B., Huang, Z., Guo, Y., Wang, Q., Niu, Z., Zuo, W.: Boosting weakly supervised object detection via learning bounding box adjusters. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2876–2885 (2021)
Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2020)
Everingham, M., Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. IJCV 88(2), 303–338 (2010). https://doi.org/10.1007/s11263-009-0275-4
Gao, W., et al.: TS-CAM: token semantic coupled attention map for weakly supervised object localization (2021)
Ghiasi, G., et al.: Simple copy-paste is a strong data augmentation method for instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2918–2928 (2021)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
Gu, X., Lin, T.Y., Kuo, W., Cui, Y.: Open-vocabulary object detection via vision and language knowledge distillation. arXiv preprint arXiv:2104.13921 (2021)
Gupta, A., Dollar, P., Girshick, R.: LVIS: a dataset for large vocabulary instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5356–5364 (2019)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Huang, G., Sun, Yu., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 646–661. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_39
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114(13), 3521–3526 (2017)
Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. 123(1), 32–73 (2017)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)
Kuznetsova, A., et al.: The open images dataset V4. Int. J. Comput. Vis. 128(7), 1956–1981 (2020). https://doi.org/10.1007/s11263-020-01316-z
Lee, S., Kwak, S., Cho, M.: Universal bounding box regression and its applications. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11366, pp. 373–387. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20876-9_24
Li, L.H., et al.: Grounded language-image pre-training. arXiv preprint arXiv:2112.03857 (2021)
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. CoRR abs/2103.14030 (2021). https://arxiv.org/abs/2103.14030
Pan, X., et al.: Unveiling the potential of structure preserving for weakly supervised object localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11642–11651 (2021)
Radford, A., et al.: Learning transferable visual models from natural language supervision (2021)
Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28, 91–99 (2015)
Shao, S., et al.: Objects365: a large-scale, high-quality dataset for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)
Singh, K.K., Lee, Y.J.: Hide-and-seek: Forcing a network to be meticulous for weakly-supervised object and action localization. In: International Conference on Computer Vision (ICCV) (2017)
Song, H.O., Girshick, R., Jegelka, S., Mairal, J., Harchaoui, Z., Darrell, T.: On learning to localize objects with minimal supervision. In: International Conference on Machine Learning, pp. 1611–1619 (2014)
Tang, P., Wang, X., Bai, S., Shen, W., Bai, X., Liu, W., Yuille, A.L.: PCL: proposal cluster learning for weakly supervised object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42, 176–191 (2018)
Tang, P., Wang, X., Bai, X., Liu, W.: Multiple instance detection network with online instance classifier refinement. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2843–2851 (2017)
Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9627–9636 (2019)
Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jegou, H.: Training data-efficient image transformers distillation through attention. In: International Conference on Machine Learning, vol. 139, pp. 10347–10357 (2021)
Uijlings, J., Popov, S., Ferrari, V.: Revisiting knowledge transfer for training object class detectors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1101–1110 (2018)
Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013). https://doi.org/10.1007/s11263-013-0620-5
Yang, H., Wu, H., Chen, H.: Detecting 11k classes: large scale object detection without fine-grained bounding boxes. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9805–9813 (2019)
Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. In: International Conference on Computer Vision (ICCV) (2019)
Zareian, A., Rosa, K.D., Hu, D.H., Chang, S.F.: Open-vocabulary object detection using captions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14393–14402 (2021)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: International Conference on Learning Representations (2018)
Huang, K., Zhang, J., Zhang, J., et al.: Mixed supervised object detection with robust objectness transfer. IEEE Trans. Pattern Anal. Mach. Intell. 41(3), 639–653 (2018)
Zhang, X., Wei, Y., Feng, J., Yang, Y., Huang, T.: Adversarial complementary learning for weakly supervised object localization. In: IEEE CVPR (2018)
Zhang, X., Wei, Y., Kang, G., Yang, Y., Huang, T.: Self-produced guidance for weakly-supervised object localization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 610–625. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_37
Zhang, X., Wei, Y., Yang, Y.: Inter-image communication for weakly supervised localization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 271–287. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_17
Zhong, Y., Wang, J., Peng, J., Zhang, L.: Boosting weakly supervised object detection with progressive knowledge transfer. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 615–631. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_37
Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 13001–13008 (2020)
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Computer Vision and Pattern Recognition (2016)
Zhou, X., Girdhar, R., Joulin, A., Krähenbühl, P., Misra, I.: Detecting twenty-thousand classes using image-level supervision. arXiv preprint arXiv:2201.02605 (2021)
Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 391–405. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_26
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lin, Y. et al. (2022). A Simple Approach and Benchmark for 21,000-Category Object Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13671. Springer, Cham. https://doi.org/10.1007/978-3-031-20083-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-20083-0_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20082-3
Online ISBN: 978-3-031-20083-0
eBook Packages: Computer ScienceComputer Science (R0)