A Simple Approach and Benchmark for 21,000-Category Object Detection | SpringerLink
Skip to main content

A Simple Approach and Benchmark for 21,000-Category Object Detection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13671))

Included in the following conference series:

  • 2557 Accesses

Abstract

Current object detection systems and benchmarks typically handle a limited number of categories, up to about a thousand categories. This paper scales the number of categories for object detection systems and benchmarks up to 21,000, by leveraging existing object detection and image classification data. Unlike previous efforts that usually transfer knowledge from base detectors to image classification data, we propose to rely more on a reverse information flow from a base image classifier to object detection data. In this framework, the large-vocabulary classification capability is first learnt thoroughly using only the image classification data. In this step, the image classification problem is reformulated as a special configuration of object detection that treats the entire image as a special RoI. Then, a simple multi-task learning approach is used to join the image classification and object detection data, with the backbone and the RoI classification branch shared between two tasks. This two-stage approach, though very simple without a sophisticated process such as multi-instance learning (MIL) to generate pseudo labels for object proposals on the image classification data, performs rather strongly that it surpasses previous large-vocabulary object detection systems on a standard evaluation protocol of tailored LVIS.

Considering that the tailored LVIS evaluation only accounts for a few hundred novel object categories, we present a new evaluation benchmark that assesses the detection of all 21,841 object classes in the ImageNet-21K dataset. The baseline approach and evaluation benchmark will be publicly available at https://github.com/SwinTransformer/Simple-21K-Detection. We hope these would ease future research on large-vocabulary object detection.

Equal Contribution. The work is done when Yutong Lin and Chen Li are interns at MSRA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bansal, A., Sikka, K., Sharma, G., Chellappa, R., Divakaran, A.: Zero-shot object detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 384–400 (2018)

    Google Scholar 

  2. Bilen, H., Vedaldi, A.: Weakly supervised deep detection networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2846–2854 (2016)

    Google Scholar 

  3. Choe, J., Shim, H.: Attention-based dropout layer for weakly supervised object localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  4. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: RandAugment: practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 702–703 (2020)

    Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  6. Deselaers, T., Alexe, B., Ferrari, V.: Weakly supervised localization and learning with generic knowledge. Int. J. Comput. Vis. 100(3), 275–293 (2012). https://doi.org/10.1007/s11263-012-0538-3

    Article  MathSciNet  Google Scholar 

  7. Dong, B., Huang, Z., Guo, Y., Wang, Q., Niu, Z., Zuo, W.: Boosting weakly supervised object detection via learning bounding box adjusters. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2876–2885 (2021)

    Google Scholar 

  8. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2020)

    Google Scholar 

  9. Everingham, M., Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. IJCV 88(2), 303–338 (2010). https://doi.org/10.1007/s11263-009-0275-4

    Article  Google Scholar 

  10. Gao, W., et al.: TS-CAM: token semantic coupled attention map for weakly supervised object localization (2021)

    Google Scholar 

  11. Ghiasi, G., et al.: Simple copy-paste is a strong data augmentation method for instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2918–2928 (2021)

    Google Scholar 

  12. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  13. Gu, X., Lin, T.Y., Kuo, W., Cui, Y.: Open-vocabulary object detection via vision and language knowledge distillation. arXiv preprint arXiv:2104.13921 (2021)

  14. Gupta, A., Dollar, P., Girshick, R.: LVIS: a dataset for large vocabulary instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5356–5364 (2019)

    Google Scholar 

  15. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  17. Huang, G., Sun, Yu., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 646–661. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_39

    Chapter  Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  19. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114(13), 3521–3526 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. 123(1), 32–73 (2017)

    Article  MathSciNet  Google Scholar 

  21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  22. Kuznetsova, A., et al.: The open images dataset V4. Int. J. Comput. Vis. 128(7), 1956–1981 (2020). https://doi.org/10.1007/s11263-020-01316-z

    Article  Google Scholar 

  23. Lee, S., Kwak, S., Cho, M.: Universal bounding box regression and its applications. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11366, pp. 373–387. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20876-9_24

    Chapter  Google Scholar 

  24. Li, L.H., et al.: Grounded language-image pre-training. arXiv preprint arXiv:2112.03857 (2021)

  25. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  26. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  27. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. CoRR abs/2103.14030 (2021). https://arxiv.org/abs/2103.14030

  28. Pan, X., et al.: Unveiling the potential of structure preserving for weakly supervised object localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11642–11651 (2021)

    Google Scholar 

  29. Radford, A., et al.: Learning transferable visual models from natural language supervision (2021)

    Google Scholar 

  30. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  31. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28, 91–99 (2015)

    Google Scholar 

  32. Shao, S., et al.: Objects365: a large-scale, high-quality dataset for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  33. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)

    Google Scholar 

  34. Singh, K.K., Lee, Y.J.: Hide-and-seek: Forcing a network to be meticulous for weakly-supervised object and action localization. In: International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  35. Song, H.O., Girshick, R., Jegelka, S., Mairal, J., Harchaoui, Z., Darrell, T.: On learning to localize objects with minimal supervision. In: International Conference on Machine Learning, pp. 1611–1619 (2014)

    Google Scholar 

  36. Tang, P., Wang, X., Bai, S., Shen, W., Bai, X., Liu, W., Yuille, A.L.: PCL: proposal cluster learning for weakly supervised object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42, 176–191 (2018)

    Article  Google Scholar 

  37. Tang, P., Wang, X., Bai, X., Liu, W.: Multiple instance detection network with online instance classifier refinement. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2843–2851 (2017)

    Google Scholar 

  38. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9627–9636 (2019)

    Google Scholar 

  39. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jegou, H.: Training data-efficient image transformers distillation through attention. In: International Conference on Machine Learning, vol. 139, pp. 10347–10357 (2021)

    Google Scholar 

  40. Uijlings, J., Popov, S., Ferrari, V.: Revisiting knowledge transfer for training object class detectors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1101–1110 (2018)

    Google Scholar 

  41. Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013). https://doi.org/10.1007/s11263-013-0620-5

    Article  Google Scholar 

  42. Yang, H., Wu, H., Chen, H.: Detecting 11k classes: large scale object detection without fine-grained bounding boxes. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9805–9813 (2019)

    Google Scholar 

  43. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. In: International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  44. Zareian, A., Rosa, K.D., Hu, D.H., Chang, S.F.: Open-vocabulary object detection using captions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14393–14402 (2021)

    Google Scholar 

  45. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: International Conference on Learning Representations (2018)

    Google Scholar 

  46. Huang, K., Zhang, J., Zhang, J., et al.: Mixed supervised object detection with robust objectness transfer. IEEE Trans. Pattern Anal. Mach. Intell. 41(3), 639–653 (2018)

    Google Scholar 

  47. Zhang, X., Wei, Y., Feng, J., Yang, Y., Huang, T.: Adversarial complementary learning for weakly supervised object localization. In: IEEE CVPR (2018)

    Google Scholar 

  48. Zhang, X., Wei, Y., Kang, G., Yang, Y., Huang, T.: Self-produced guidance for weakly-supervised object localization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 610–625. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_37

    Chapter  Google Scholar 

  49. Zhang, X., Wei, Y., Yang, Y.: Inter-image communication for weakly supervised localization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 271–287. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_17

    Chapter  Google Scholar 

  50. Zhong, Y., Wang, J., Peng, J., Zhang, L.: Boosting weakly supervised object detection with progressive knowledge transfer. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 615–631. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_37

    Chapter  Google Scholar 

  51. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 13001–13008 (2020)

    Google Scholar 

  52. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  53. Zhou, X., Girdhar, R., Joulin, A., Krähenbühl, P., Misra, I.: Detecting twenty-thousand classes using image-level supervision. arXiv preprint arXiv:2201.02605 (2021)

  54. Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 391–405. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_26

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, Y. et al. (2022). A Simple Approach and Benchmark for 21,000-Category Object Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13671. Springer, Cham. https://doi.org/10.1007/978-3-031-20083-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20083-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20082-3

  • Online ISBN: 978-3-031-20083-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics