Abstract
This paper does not contain technical novelty but introduces our key discoveries in a data generation protocol, a database and insights. We aim to address the lack of large-scale datasets in micro-expression (MiE) recognition due to the prohibitive cost of data collection, which renders large-scale training less feasible. To this end, we develop a protocol to automatically synthesize large scale MiE training data that allow us to train improved recognition models for real-world test data. Specifically, we discover three types of Action Units (AUs) that can constitute trainable MiEs. These AUs come from real-world MiEs, early frames of macro-expression videos, and the relationship between AUs and expression categories defined by human expert knowledge. With these AUs, our protocol then employs large numbers of face images of various identities and an off-the-shelf face generator for MiE synthesis, yielding the MiE-X dataset. MiE recognition models are trained or pre-trained on MiE-X and evaluated on real-world test sets, where very competitive accuracy is obtained. Experimental results not only validate the effectiveness of the discovered AUs and MiE-X dataset but also reveal some interesting properties of MiEs: they generalize across faces, are close to early-stage macro-expressions, and can be manually defined. (This work was supported by the ARC Discovery Early Career Researcher Award (DE200101283) and the ARC Discovery Project (DP210102801).)
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For each ID and each of the three classes positive, negative, and surprise, we generate three MiE samples corresponding to three types of AUs. Each sample has an onset and an apex frames, totaling 9 MiE samples and 18 frames per ID.
- 2.
We also acknowledge GANimation that provides us with realistic facial images.
- 3.
Label space of MMEW: happiness, surprise, anger, disgust, fear, sadness; Label space of SAMM: happiness, surprise, anger, disgust, fear.
- 4.
We discard those samples in real-world datasets that overlap with the test subset.
- 5.
Note that each image in EmotionNet usually denotes a different identity.
References
Baltrusaitis, T., Zadeh, A., Lim, Y.C., Morency, L.P.: Openface 2.0: facial behavior analysis toolkit. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 59–66. IEEE (2018)
Ben, X., Jia, X., Yan, R., Zhang, X., Meng, W.: Learning effective binary descriptors for micro-expression recognition transferred by macro-information. Pattern Recogn. Lett. 107, 50–58 (2018)
Ben, X., et al.: Video-based facial micro-expression analysis: a survey of datasets, features and algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 44, 5826–5846 (2021)
Davison, A., Merghani, W., Yap, M.: Objective classes for micro-facial expression recognition. J. Imaging 4(10), 119 (2018)
Davison, A.K., Lansley, C., Costen, N., Tan, K., Yap, M.H.: SAMM: a spontaneous micro-facial movement dataset. IEEE Trans. Affect. Comput. 9(1), 116–129 (2016)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Du, S., Tao, Y., Martinez, A.M.: Compound facial expressions of emotion. Proc. Natl. Acad. Sci. 111(15), E1454–E1462 (2014)
Eckman, P., Friesen, W.: Facial action coding system (facs): a technique for the measurement of facial action. A8@ 5 3, 56–75 (1978)
Ekman, P., Rosenberg, E.L.: What the face reveals: Basic and applied studies of spontaneous expression using the Facial Action Coding System (FACS). Oxford University Press, USA (1997)
Fabian Benitez-Quiroz, C., Srinivasan, R., Martinez, A.M.: Emotionet: an accurate, real-time algorithm for the automatic annotation of a million facial expressions in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5562–5570 (2016)
Hao, X., Tian, M.: Deep belief network based on double weber local descriptor in micro-expression recognition. In: Park, J.J.J.H., Chen, S.-C., Raymond Choo, K.-K. (eds.) MUE/FutureTech -2017. LNEE, vol. 448, pp. 419–425. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-5041-1_68
Hoffman, J., et al.: Cycada: cycle-consistent adversarial domain adaptation. arXiv preprint arXiv:1711.03213 (2017)
Huang, X., Wang, S.J., Zhao, G., Piteikainen, M.: Facial micro-expression recognition using spatiotemporal local binary pattern with integral projection. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 1–9 (2015)
Huang, X., Zhao, G., Hong, X., Zheng, W., Pietikäinen, M.: Spontaneous facial micro-expression analysis using spatiotemporal completed local quantized patterns. Neurocomputing 175, 564–578 (2016)
Kar, A., et al.: Meta-sim: learning to generate synthetic datasets. arXiv preprint arXiv:1904.11621 (2019)
Khor, H.Q., See, J., Phan, R.C.W., Lin, W.: Enriched long-term recurrent convolutional network for facial micro-expression recognition. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 667–674. IEEE (2018)
Kim, D.H., Baddar, W.J., Ro, Y.M.: Micro-expression recognition with expression-state constrained spatio-temporal feature representations. In: Proceedings of the 24th ACM international conference on Multimedia, pp. 382–386. ACM (2016)
Li, X., Pfister, T., Huang, X., Zhao, G., Pietikäinen, M.: A spontaneous micro-expression database: inducement, collection and baseline. In: 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), pp. 1–6. IEEE (2013)
Li, Y., Huang, X., Zhao, G.: Can micro-expression be recognized based on single apex frame? In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 3094–3098. IEEE (2018)
Liong, S.T., Gan, Y., Yau, W.C., Huang, Y.C., Ken, T.L.: Off-apexnet on micro-expression recognition system. arXiv preprint arXiv:1805.08699 (2018)
Liu, Y., Du, H., Liang, Z., Gedeon, T.: A neural micro-expression recognizer. In: 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019). IEEE (2019)
Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, pp. 94–101. IEEE (2010)
Matsumoto, D., Yoo, S.H., Nakagawa, S.: Culture, emotion regulation, and adjustment. J. Pers. Soc. Psychol. 94(6), 925 (2008)
Patel, D., Hong, X., Zhao, G.: Selective deep features for micro-expression recognition. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 2258–2263. IEEE (2016)
Peng, M., Wang, C., Chen, T., Liu, G., Fu, X.: Dual temporal scale convolutional neural network for micro-expression recognition. Front. Psychol. 8, 1745 (2017)
Peng, M., Wu, Z., Zhang, Z., Chen, T.: From macro to micro expression recognition: Deep learning on small datasets using transfer learning. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 657–661. IEEE (2018)
Polikovsky, S., Kameda, Y., Ohta, Y.: Facial micro-expressions recognition using high speed camera and 3d-gradient descriptor (2009)
Polikovsky, S., Kameda, Y., Ohta, Y.: Facial micro-expression detection in hi-speed video based on facial action coding system (FACS). IEICE Trans. Inf. Syst. 96(1), 81–92 (2013)
Pumarola, A., Agudo, A., Martinez, A.M., Sanfeliu, A., Moreno-Noguer, F.: GANimation: anatomically-aware facial animation from a single image. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 835–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_50
Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth from computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 102–118. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_7
Ruiz, N., Schulter, S., Chandraker, M.: Learning to simulate. arXiv preprint arXiv:1810.02513 (2018)
Sakaridis, C., Dai, D., Van Gool, L.: Semantic foggy scene understanding with synthetic data. Int. J. Comput. Vision 126(9), 973–992 (2018)
See, J., Yap, M.H., Li, J., Hong, X., Wang, S.J.: Megc 2019-the second facial micro-expressions grand challenge. In: 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), pp. 1–5. IEEE (2019)
Shreve, M., Godavarthy, S., Goldgof, D., Sarkar, S.: Macro-and micro-expression spotting in long videos using spatio-temporal strain. In: Face and Gesture 2011, pp. 51–56. IEEE (2011)
Tremblay, J., et al.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 969–977 (2018)
Wang, S.J., et al.: Micro-expression recognition with small sample size by transferring long-term convolutional neural network. Neurocomputing 312, 251–262 (2018)
Wang, Y., See, J., Phan, R.C.-W., Oh, Y.-H.: LBP with six intersection points: reducing redundant information in LBP-TOP for micro-expression recognition. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9003, pp. 525–537. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16865-4_34
Xu, F., Zhang, J., Wang, J.Z.: Microexpression identification and categorization using a facial dynamics map. IEEE Trans. Affect. Comput. 8(2), 254–267 (2017)
Yan, W.J., et al.: Casme II: an improved spontaneous micro-expression database and the baseline evaluation. PLoS ONE 9(1), e86041 (2014)
Yao, Y., Zheng, L., Yang, X., Naphade, M., Gedeon, T.: Simulating content consistent vehicle datasets with attribute descent. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 775–791. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_46
Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016). https://doi.org/10.1109/LSP.2016.2603342
Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007)
Zheng, Z., Zheng, L., Yang, Y.: Unlabeled samples generated by GAN improve the person re-identification baseline in vitro. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3754–3762 (2017)
Zhong, Z., Zheng, L., Zheng, Z., Li, S., Yang, Y.: Camera style adaptation for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5157–5166 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, Y., Wang, Z., Gedeon, T., Zheng, L. (2022). How to Synthesize a Large-Scale and Trainable Micro-Expression Dataset?. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13668. Springer, Cham. https://doi.org/10.1007/978-3-031-20074-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-20074-8_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20073-1
Online ISBN: 978-3-031-20074-8
eBook Packages: Computer ScienceComputer Science (R0)