How to Synthesize a Large-Scale and Trainable Micro-Expression Dataset? | SpringerLink
Skip to main content

How to Synthesize a Large-Scale and Trainable Micro-Expression Dataset?

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

This paper does not contain technical novelty but introduces our key discoveries in a data generation protocol, a database and insights. We aim to address the lack of large-scale datasets in micro-expression (MiE) recognition due to the prohibitive cost of data collection, which renders large-scale training less feasible. To this end, we develop a protocol to automatically synthesize large scale MiE training data that allow us to train improved recognition models for real-world test data. Specifically, we discover three types of Action Units (AUs) that can constitute trainable MiEs. These AUs come from real-world MiEs, early frames of macro-expression videos, and the relationship between AUs and expression categories defined by human expert knowledge. With these AUs, our protocol then employs large numbers of face images of various identities and an off-the-shelf face generator for MiE synthesis, yielding the MiE-X dataset. MiE recognition models are trained or pre-trained on MiE-X and evaluated on real-world test sets, where very competitive accuracy is obtained. Experimental results not only validate the effectiveness of the discovered AUs and MiE-X dataset but also reveal some interesting properties of MiEs: they generalize across faces, are close to early-stage macro-expressions, and can be manually defined. (This work was supported by the ARC Discovery Early Career Researcher Award (DE200101283) and the ARC Discovery Project (DP210102801).)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For each ID and each of the three classes positive, negative, and surprise, we generate three MiE samples corresponding to three types of AUs. Each sample has an onset and an apex frames, totaling 9 MiE samples and 18 frames per ID.

  2. 2.

    We also acknowledge GANimation that provides us with realistic facial images.

  3. 3.

    Label space of MMEW: happiness, surprise, anger, disgust, fear, sadness; Label space of SAMM: happiness, surprise, anger, disgust, fear.

  4. 4.

    We discard those samples in real-world datasets that overlap with the test subset.

  5. 5.

    Note that each image in EmotionNet usually denotes a different identity.

References

  1. Baltrusaitis, T., Zadeh, A., Lim, Y.C., Morency, L.P.: Openface 2.0: facial behavior analysis toolkit. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 59–66. IEEE (2018)

    Google Scholar 

  2. Ben, X., Jia, X., Yan, R., Zhang, X., Meng, W.: Learning effective binary descriptors for micro-expression recognition transferred by macro-information. Pattern Recogn. Lett. 107, 50–58 (2018)

    Article  Google Scholar 

  3. Ben, X., et al.: Video-based facial micro-expression analysis: a survey of datasets, features and algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 44, 5826–5846 (2021)

    Google Scholar 

  4. Davison, A., Merghani, W., Yap, M.: Objective classes for micro-facial expression recognition. J. Imaging 4(10), 119 (2018)

    Article  Google Scholar 

  5. Davison, A.K., Lansley, C., Costen, N., Tan, K., Yap, M.H.: SAMM: a spontaneous micro-facial movement dataset. IEEE Trans. Affect. Comput. 9(1), 116–129 (2016)

    Article  Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  7. Du, S., Tao, Y., Martinez, A.M.: Compound facial expressions of emotion. Proc. Natl. Acad. Sci. 111(15), E1454–E1462 (2014)

    Article  Google Scholar 

  8. Eckman, P., Friesen, W.: Facial action coding system (facs): a technique for the measurement of facial action. A8@ 5 3, 56–75 (1978)

    Google Scholar 

  9. Ekman, P., Rosenberg, E.L.: What the face reveals: Basic and applied studies of spontaneous expression using the Facial Action Coding System (FACS). Oxford University Press, USA (1997)

    Google Scholar 

  10. Fabian Benitez-Quiroz, C., Srinivasan, R., Martinez, A.M.: Emotionet: an accurate, real-time algorithm for the automatic annotation of a million facial expressions in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5562–5570 (2016)

    Google Scholar 

  11. Hao, X., Tian, M.: Deep belief network based on double weber local descriptor in micro-expression recognition. In: Park, J.J.J.H., Chen, S.-C., Raymond Choo, K.-K. (eds.) MUE/FutureTech -2017. LNEE, vol. 448, pp. 419–425. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-5041-1_68

    Chapter  Google Scholar 

  12. Hoffman, J., et al.: Cycada: cycle-consistent adversarial domain adaptation. arXiv preprint arXiv:1711.03213 (2017)

  13. Huang, X., Wang, S.J., Zhao, G., Piteikainen, M.: Facial micro-expression recognition using spatiotemporal local binary pattern with integral projection. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 1–9 (2015)

    Google Scholar 

  14. Huang, X., Zhao, G., Hong, X., Zheng, W., Pietikäinen, M.: Spontaneous facial micro-expression analysis using spatiotemporal completed local quantized patterns. Neurocomputing 175, 564–578 (2016)

    Article  Google Scholar 

  15. Kar, A., et al.: Meta-sim: learning to generate synthetic datasets. arXiv preprint arXiv:1904.11621 (2019)

  16. Khor, H.Q., See, J., Phan, R.C.W., Lin, W.: Enriched long-term recurrent convolutional network for facial micro-expression recognition. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 667–674. IEEE (2018)

    Google Scholar 

  17. Kim, D.H., Baddar, W.J., Ro, Y.M.: Micro-expression recognition with expression-state constrained spatio-temporal feature representations. In: Proceedings of the 24th ACM international conference on Multimedia, pp. 382–386. ACM (2016)

    Google Scholar 

  18. Li, X., Pfister, T., Huang, X., Zhao, G., Pietikäinen, M.: A spontaneous micro-expression database: inducement, collection and baseline. In: 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), pp. 1–6. IEEE (2013)

    Google Scholar 

  19. Li, Y., Huang, X., Zhao, G.: Can micro-expression be recognized based on single apex frame? In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 3094–3098. IEEE (2018)

    Google Scholar 

  20. Liong, S.T., Gan, Y., Yau, W.C., Huang, Y.C., Ken, T.L.: Off-apexnet on micro-expression recognition system. arXiv preprint arXiv:1805.08699 (2018)

  21. Liu, Y., Du, H., Liang, Z., Gedeon, T.: A neural micro-expression recognizer. In: 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019). IEEE (2019)

    Google Scholar 

  22. Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, pp. 94–101. IEEE (2010)

    Google Scholar 

  23. Matsumoto, D., Yoo, S.H., Nakagawa, S.: Culture, emotion regulation, and adjustment. J. Pers. Soc. Psychol. 94(6), 925 (2008)

    Article  Google Scholar 

  24. Patel, D., Hong, X., Zhao, G.: Selective deep features for micro-expression recognition. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 2258–2263. IEEE (2016)

    Google Scholar 

  25. Peng, M., Wang, C., Chen, T., Liu, G., Fu, X.: Dual temporal scale convolutional neural network for micro-expression recognition. Front. Psychol. 8, 1745 (2017)

    Article  Google Scholar 

  26. Peng, M., Wu, Z., Zhang, Z., Chen, T.: From macro to micro expression recognition: Deep learning on small datasets using transfer learning. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 657–661. IEEE (2018)

    Google Scholar 

  27. Polikovsky, S., Kameda, Y., Ohta, Y.: Facial micro-expressions recognition using high speed camera and 3d-gradient descriptor (2009)

    Google Scholar 

  28. Polikovsky, S., Kameda, Y., Ohta, Y.: Facial micro-expression detection in hi-speed video based on facial action coding system (FACS). IEICE Trans. Inf. Syst. 96(1), 81–92 (2013)

    Article  Google Scholar 

  29. Pumarola, A., Agudo, A., Martinez, A.M., Sanfeliu, A., Moreno-Noguer, F.: GANimation: anatomically-aware facial animation from a single image. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 835–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_50

    Chapter  Google Scholar 

  30. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth from computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 102–118. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_7

    Chapter  Google Scholar 

  31. Ruiz, N., Schulter, S., Chandraker, M.: Learning to simulate. arXiv preprint arXiv:1810.02513 (2018)

  32. Sakaridis, C., Dai, D., Van Gool, L.: Semantic foggy scene understanding with synthetic data. Int. J. Comput. Vision 126(9), 973–992 (2018)

    Article  Google Scholar 

  33. See, J., Yap, M.H., Li, J., Hong, X., Wang, S.J.: Megc 2019-the second facial micro-expressions grand challenge. In: 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), pp. 1–5. IEEE (2019)

    Google Scholar 

  34. Shreve, M., Godavarthy, S., Goldgof, D., Sarkar, S.: Macro-and micro-expression spotting in long videos using spatio-temporal strain. In: Face and Gesture 2011, pp. 51–56. IEEE (2011)

    Google Scholar 

  35. Tremblay, J., et al.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 969–977 (2018)

    Google Scholar 

  36. Wang, S.J., et al.: Micro-expression recognition with small sample size by transferring long-term convolutional neural network. Neurocomputing 312, 251–262 (2018)

    Article  Google Scholar 

  37. Wang, Y., See, J., Phan, R.C.-W., Oh, Y.-H.: LBP with six intersection points: reducing redundant information in LBP-TOP for micro-expression recognition. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9003, pp. 525–537. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16865-4_34

    Chapter  Google Scholar 

  38. Xu, F., Zhang, J., Wang, J.Z.: Microexpression identification and categorization using a facial dynamics map. IEEE Trans. Affect. Comput. 8(2), 254–267 (2017)

    Article  Google Scholar 

  39. Yan, W.J., et al.: Casme II: an improved spontaneous micro-expression database and the baseline evaluation. PLoS ONE 9(1), e86041 (2014)

    Article  Google Scholar 

  40. Yao, Y., Zheng, L., Yang, X., Naphade, M., Gedeon, T.: Simulating content consistent vehicle datasets with attribute descent. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 775–791. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_46

    Chapter  Google Scholar 

  41. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016). https://doi.org/10.1109/LSP.2016.2603342

    Article  Google Scholar 

  42. Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007)

    Article  Google Scholar 

  43. Zheng, Z., Zheng, L., Yang, Y.: Unlabeled samples generated by GAN improve the person re-identification baseline in vitro. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3754–3762 (2017)

    Google Scholar 

  44. Zhong, Z., Zheng, L., Zheng, Z., Li, S., Yang, Y.: Camera style adaptation for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5157–5166 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchi Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 222 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Wang, Z., Gedeon, T., Zheng, L. (2022). How to Synthesize a Large-Scale and Trainable Micro-Expression Dataset?. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13668. Springer, Cham. https://doi.org/10.1007/978-3-031-20074-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20074-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20073-1

  • Online ISBN: 978-3-031-20074-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics