Not Just Streaks: Towards Ground Truth for Single Image Deraining | SpringerLink
Skip to main content

Not Just Streaks: Towards Ground Truth for Single Image Deraining

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

We propose a large-scale dataset of real-world rainy and clean image pairs and a method to remove degradations, induced by rain streaks and rain accumulation, from the image. As there exists no real-world dataset for deraining, current state-of-the-art methods rely on synthetic data and thus are limited by the sim2real domain gap; moreover, rigorous evaluation remains a challenge due to the absence of a real paired dataset. We fill this gap by collecting a real paired deraining dataset through meticulous control of non-rain variations. Our dataset enables paired training and quantitative evaluation for diverse real-world rain phenomena (e.g. rain streaks and rain accumulation). To learn a representation robust to rain phenomena, we propose a deep neural network that reconstructs the underlying scene by minimizing a rain-robust loss between rainy and clean images. Extensive experiments demonstrate that our model outperforms the state-of-the-art deraining methods on real rainy images under various conditions. Project website: https://visual.ee.ucla.edu/gt_rain.htm/.

Y. Ba and H. Zhang—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use the original code and network weights from the authors for comparison. Code links for all comparison methods are provided in the supplementary material.

  2. 2.

    Both DGNL-Net [20] and HRR [27] cannot be retrained on our real dataset, as both require additional supervision, such as transmission maps and depth maps.

References

  1. Ancuti, C.O., Ancuti, C., Sbert, M., Timofte, R.: Dense-haze: a benchmark for image dehazing with dense-haze and haze-free images. In: 2019 IEEE international conference on image processing (ICIP), pp. 1014–1018. IEEE (2019)

    Google Scholar 

  2. Ancuti, C.O., Ancuti, C., Timofte, R.: NH-haze: an image dehazing benchmark with non-homogeneous hazy and haze-free images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 444–445 (2020)

    Google Scholar 

  3. Ancuti, C.O., Ancuti, C., Timofte, R., De Vleeschouwer, C.: O-haze: a dehazing benchmark with real hazy and haze-free outdoor images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 754–762 (2018)

    Google Scholar 

  4. Ancuti, C., Ancuti, C.O., Timofte, R., De Vleeschouwer, C.: I-HAZE: a dehazing benchmark with real hazy and haze-free indoor images. In: Blanc-Talon, J., Helbert, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2018. LNCS, vol. 11182, pp. 620–631. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01449-0_52

    Chapter  MATH  Google Scholar 

  5. Beard, K.V., Chuang, C.: A new model for the equilibrium shape of raindrops. J. Atmosp. Sci. 44(11), 1509–1524 (1987)

    Article  Google Scholar 

  6. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  7. Chen, Y.L., Hsu, C.T.: A generalized low-rank appearance model for spatio-temporally correlated rain streaks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1968–1975 (2013)

    Google Scholar 

  8. Deng, L.J., Huang, T.Z., Zhao, X.L., Jiang, T.X.: A directional global sparse model for single image rain removal. Appl. Math. Model. 59, 662–679 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  10. Foote, G.B., Du Toit, P.S.: Terminal velocity of raindrops aloft. J. Appl. Meteorol. 8(2), 249–253 (1969)

    Article  Google Scholar 

  11. Fu, X., Huang, J., Ding, X., Liao, Y., Paisley, J.: Clearing the skies: a deep network architecture for single-image rain removal. IEEE Trans. Image Process. 26(6), 2944–2956 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., Paisley, J.: Removing rain from single images via a deep detail network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3855–3863 (2017)

    Google Scholar 

  13. Garg, K., Nayar, S.K.: Vision and rain. Int. J. Comput. Vis. 75(1), 3–27 (2007)

    Article  Google Scholar 

  14. Gunn, R., Kinzer, G.D.: The terminal velocity of fall for water droplets in stagnant air. J. Atmos. Sci. 6(4), 243–248 (1949)

    Google Scholar 

  15. Guo, Q., et al.: EfficientDeRain: learning pixel-wise dilation filtering for high-efficiency single-image deraining. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 1487–1495 (2021)

    Google Scholar 

  16. Gutmann, M., Hyvärinen, A.: Noise-contrastive estimation: a new estimation principle for unnormalized statistical models. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 297–304. JMLR Workshop and Conference Proceedings (2010)

    Google Scholar 

  17. Halder, S.S., Lalonde, J.F., de Charette, R.: Physics-based rendering for improving robustness to rain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10203–10212 (2019)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  19. Hu, X., Fu, C.W., Zhu, L., Heng, P.A.: Depth-attentional features for single-image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8022–8031 (2019)

    Google Scholar 

  20. Hu, X., Zhu, L., Wang, T., Fu, C.W., Heng, P.A.: Single-image real-time rain removal based on depth-guided non-local features. IEEE Trans. Image Process. 30, 1759–1770 (2021)

    Article  Google Scholar 

  21. Huynh-Thu, Q., Ghanbari, M.: Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 44(13), 800–801 (2008)

    Article  Google Scholar 

  22. Jiang, K., et al.: Multi-scale progressive fusion network for single image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8346–8355 (2020)

    Google Scholar 

  23. Jiang, T.X., Huang, T.Z., Zhao, X.L., Deng, L.J., Wang, Y.: FastDeRain: a novel video rain streak removal method using directional gradient priors. IEEE Trans. Image Process. 28(4), 2089–2102 (2018)

    Article  MathSciNet  Google Scholar 

  24. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  25. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  26. Li, G., He, X., Zhang, W., Chang, H., Dong, L., Lin, L.: Non-locally enhanced encoder-decoder network for single image de-raining. In: Proceedings of the 26th ACM international conference on Multimedia, pp. 1056–1064 (2018)

    Google Scholar 

  27. Li, R., Cheong, L.F., Tan, R.T.: Heavy rain image restoration: integrating physics model and conditional adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1633–1642 (2019)

    Google Scholar 

  28. Li, R., Tan, R.T., Cheong, L.F.: All in one bad weather removal using architectural search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3175–3185 (2020)

    Google Scholar 

  29. Li, Y., Tan, R.T., Guo, X., Lu, J., Brown, M.S.: Rain streak removal using layer priors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2736–2744 (2016)

    Google Scholar 

  30. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017. Conference Track Proceedings. OpenReview.net (2017), https://openreview.net/forum?id=Skq89Scxx

  31. Lowe, D.: Sift-the scale invariant feature transform. Int. J. 2(91–110), 2 (2004)

    Google Scholar 

  32. Ltd., O.: OpenWeatherMap API. https://openweathermap.org/. Accessed 05 Nov 2021

  33. Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3397–3405 (2015)

    Google Scholar 

  34. Manning, R.M.: Stochastic Electromagnetic Image Propagation. McGraw-Hill Companies, New York (1993)

    Google Scholar 

  35. Marshall, J., Palmer, W.M.: The distribution of raindrops with size. J. Meteorol. 5(4), 165–166 (1948)

    Article  Google Scholar 

  36. Ni, S., Cao, X., Yue, T., Hu, X.: Controlling the rain: from removal to rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6328–6337 (2021)

    Google Scholar 

  37. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  38. Pan, J., et al.: Learning dual convolutional neural networks for low-level vision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3070–3079 (2018)

    Google Scholar 

  39. Ren, D., Shang, W., Zhu, P., Hu, Q., Meng, D., Zuo, W.: Single image deraining using bilateral recurrent network. IEEE Trans. Image Process. 29, 6852–6863 (2020)

    Article  MATH  Google Scholar 

  40. Thirion, J.P.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Med. Image Anal. 2(3), 243–260 (1998)

    Article  Google Scholar 

  41. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45(1), S61–S72 (2009)

    Article  Google Scholar 

  42. Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2020

    Google Scholar 

  43. Wang, H., Yue, Z., Xie, Q., Zhao, Q., Zheng, Y., Meng, D.: From rain generation to rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14791–14801 (2021)

    Google Scholar 

  44. Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019)

    Google Scholar 

  45. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  46. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 1398–1402. IEEE (2003)

    Google Scholar 

  47. Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019)

    Google Scholar 

  48. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3733–3742 (2018)

    Google Scholar 

  49. Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(6), 1377–1393 (2019)

    Article  Google Scholar 

  50. Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1357–1366 (2017)

    Google Scholar 

  51. Yang, W., Tan, R.T., Wang, S., Fang, Y., Liu, J.: Single image deraining: from model-based to data-driven and beyond. IEEE Trans. Pattern Anal. Mach. Intell. 43, 4059–4077 (2020)

    Article  Google Scholar 

  52. Yasarla, R., Patel, V.M.: Uncertainty guided multi-scale residual learning-using a cycle spinning CNN for single image de-raining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8405–8414 (2019)

    Google Scholar 

  53. Ye, Y., Chang, Y., Zhou, H., Yan, L.: Closing the loop: joint rain generation and removal via disentangled image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2053–2062 (2021)

    Google Scholar 

  54. Yue, Z., Xie, J., Zhao, Q., Meng, D.: Semi-supervised video deraining with dynamical rain generator. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 642–652 (2021)

    Google Scholar 

  55. Zamir, S.W., et al.: Multi-stage progressive image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14821–14831 (2021)

    Google Scholar 

  56. Zhang, H., Patel, V.M.: Density-aware single image de-raining using a multi-stream dense network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 695–704 (2018)

    Google Scholar 

  57. Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE Trans. Circuits Syst. Video Technol. 30(11), 3943–3956 (2019)

    Article  Google Scholar 

  58. Zhang, X., Li, H., Qi, Y., Leow, W.K., Ng, T.K.: Rain removal in video by combining temporal and chromatic properties. In: 2006 IEEE International Conference on Multimedia and Expo, pp. 461–464. IEEE (2006)

    Google Scholar 

  59. Zhao, H., Gallo, O., Frosio, I., Kautz, J.: Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging 3(1), 47–57 (2016)

    Article  Google Scholar 

  60. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  61. Zhu, L., Fu, C.W., Lischinski, D., Heng, P.A.: Joint bi-layer optimization for single-image rain streak removal. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2526–2534 (2017)

    Google Scholar 

  62. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable ConvNets v2: more deformable, better results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9308–9316 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors thank members of the Visual Machines Group for their feedback and support, as well as Mani Srivastava and Cho-Jui Hsieh for technical discussions. This research was partially supported by ARL W911NF-20-2-0158 under the cooperative A2I2 program. A.K. was also partially supported by an Army Young Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achuta Kadambi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 18354 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ba, Y. et al. (2022). Not Just Streaks: Towards Ground Truth for Single Image Deraining. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13667. Springer, Cham. https://doi.org/10.1007/978-3-031-20071-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20071-7_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20070-0

  • Online ISBN: 978-3-031-20071-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics