Editable Indoor Lighting Estimation | SpringerLink
Skip to main content

Editable Indoor Lighting Estimation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

We present a method for estimating lighting from a single perspective image of an indoor scene. Previous methods for predicting indoor illumination usually focus on either simple, parametric lighting that lack realism, or on richer representations that are difficult or even impossible to understand or modify after prediction. We propose a pipeline that estimates a parametric light that is easy to edit and allows renderings with strong shadows, alongside with a non-parametric texture with high-frequency information necessary for realistic rendering of specular objects. Once estimated, the predictions obtained with our model are interpretable and can easily be modified by an artist/user with a few mouse clicks. Quantitative and qualitative results show that our approach makes indoor lighting estimation easier to handle by a casual user, while still producing competitive results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See https://www.fxguide.com/fxfeatured/the-definitive-weta-digital-guide-to-ibl/.

  2. 2.

    Available within Blender at https://www.blender.org.

  3. 3.

    Implementation taken from https://pypi.org/project/pytorch-fid/.

References

  1. Bai, J., et al.: Deep graph learning for spatially-varying indoor lighting prediction. arXiv preprint arXiv:2202.06300 (2022)

  2. Barron, J.T., Malik, J.: Shape, illumination, and reflectance from shading. IEEE TPAMI 37(8), 1670–1687 (2014)

    Article  Google Scholar 

  3. Cheng, D., Shi, J., Chen, Y., Deng, X., Zhang, X.: Learning scene illumination by pairwise photos from rear and front mobile cameras. Comput. Graph. Forum 37(7), 213–221 (2018)

    Article  Google Scholar 

  4. Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: Stargan v2: diverse image synthesis for multiple domains. In: CVPR (2020)

    Google Scholar 

  5. Cruz, S., Hutchcroft, W., Li, Y., Khosravan, N., Boyadzhiev, I., Kang, S.B.: Zillow indoor dataset: annotated floor plans with 360 panoramas and 3D room layouts. In: CVPR (2021)

    Google Scholar 

  6. Debevec, P.: Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 189–198. SIGGRAPH (1998)

    Google Scholar 

  7. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2650–2658 (2015)

    Google Scholar 

  8. Einabadi, F., Guillemaut, J.Y., Hilton, A.: Deep neural models for illumination estimation and relighting: a survey. Comput. Graph. Forum 40(6), 315–331 (2021)

    Article  Google Scholar 

  9. Fernandez-Labrador, C., Facil, J.M., Perez-Yus, A., Demonceaux, C., Civera, J., Guerrero, J.J.: Corners for layout: End-to-end layout recovery from 360 images. IEEE Rob. Autom. Lett. 5(2), 1255–1262 (2020)

    Article  Google Scholar 

  10. Gardner, M.A., Hold-Geoffroy, Y., Sunkavalli, K., Gagne, C., Lalonde, J.F.: Deep parametric indoor lighting estimation. In: ICCV (2019)

    Google Scholar 

  11. Gardner, M.A., et al.: Learning to predict indoor illumination from a single image. ACM TOG 36(6) (2017)

    Google Scholar 

  12. Garon, M., Sunkavalli, K., Hadap, S., Carr, N., Lalonde, J.F.: Fast spatially-varying indoor lighting estimation. In: CVPR (2019)

    Google Scholar 

  13. Grosse, R., Johnson, M.K., Adelson, E.H., Freeman, W.T.: Ground truth dataset and baseline evaluations for intrinsic image algorithms. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2335–2342. IEEE (2009)

    Google Scholar 

  14. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR (2017)

    Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arxiv preprint arxiv:1412.6980 (2014)

  16. Lee, C.Y., Badrinarayanan, V., Malisiewicz, T., Rabinovich, A.: Roomnet: end-to-end room layout estimation. In: ICCV (2017)

    Google Scholar 

  17. LeGendre, C., et al.: Deeplight: learning illumination for unconstrained mobile mixed reality. In: CVPR (2019)

    Google Scholar 

  18. Li, T.M., Aittala, M., Durand, F., Lehtinen, J.: Differentiable monte carlo ray tracing through edge sampling. ACM TOG 37(6), 1–11 (2018)

    Article  Google Scholar 

  19. Li, Z., Shafiei, M., Ramamoorthi, R., Sunkavalli, K., Chandraker, M.: Inverse rendering for complex indoor scenes: shape, spatially-varying lighting and svbrdf from a single image. In: CVPR (2020)

    Google Scholar 

  20. Mandl, D., et al.: Learning lightprobes for mixed reality illumination. In: ISMAR (2017)

    Google Scholar 

  21. Park, T., Efros, A.A., Zhang, R., Zhu, J.-Y.: Contrastive learning for unpaired image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 319–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_19

    Chapter  Google Scholar 

  22. Sengupta, S., Gu, J., Kim, K., Liu, G., Jacobs, D.W., Kautz, J.: Neural inverse rendering of an indoor scene from a single image. In: ICCV (2019)

    Google Scholar 

  23. Somanath, G., Kurz, D.: HDR environment map estimation for real-time augmented reality. In: CVPR (2021)

    Google Scholar 

  24. Song, S., Funkhouser, T.: Neural illumination: lighting prediction for indoor environments. In: CVPR (2019)

    Google Scholar 

  25. Srinivasan, P.P., Mildenhall, B., Tancik, M., Barron, J.T., Tucker, R., Snavely, N.: Lighthouse: predicting lighting volumes for spatially-coherent illumination. In: CVPR (2020)

    Google Scholar 

  26. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional gans. In: CVPR (2018)

    Google Scholar 

  27. Wang, Z., Philion, J., Fidler, S., Kautz, J.: Learning indoor inverse rendering with 3D spatially-varying lighting. In: ICCV (2021)

    Google Scholar 

  28. Weber, H., Prévost, D., Lalonde, J.F.: Learning to estimate indoor lighting from 3D objects. In: 3DV (2018)

    Google Scholar 

  29. Wiles, O., Gkioxari, G., Szeliski, R., Johnson, J.: Synsin: end-to-end view synthesis from a single image. In: CVPR (2020)

    Google Scholar 

  30. Yang, C., Zheng, J., Dai, X., Tang, R., Ma, Y., Yuan, X.: Learning to reconstruct 3D non-cuboid room layout from a single rgb image. In: Winter Conference on Applications of Computer Vision (2022)

    Google Scholar 

  31. Zhan, F., et al.: Gmlight: lighting estimation via geometric distribution approximation. IEEE TIP 31, 2268–2278 (2022)

    Google Scholar 

  32. Zhan, F., et al.: Sparse needlets for lighting estimation with spherical transport loss. In: ICCV (2021)

    Google Scholar 

  33. Zhan, F., et al.: Emlight: lighting estimation via spherical distribution approximation. In: AAAI (2021)

    Google Scholar 

  34. Zhao, Y., Guo, T.: PointAR: efficient lighting estimation for mobile augmented reality. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 678–693. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_40

    Chapter  Google Scholar 

  35. Zou, C., Colburn, A., Shan, Q., Hoiem, D.: Layoutnet: reconstructing the 3D room layout from a single rgb image. In: CVPR (2018)

    Google Scholar 

Download references

Acknowledgements

This research was supported by MITACS and the NSERC grant RGPIN-2020-04799. The authors thank Pascal Audet for his help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique Weber .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 112 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weber, H., Garon, M., Lalonde, JF. (2022). Editable Indoor Lighting Estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13666. Springer, Cham. https://doi.org/10.1007/978-3-031-20068-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20068-7_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20067-0

  • Online ISBN: 978-3-031-20068-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics