Abstract
We present a method for estimating lighting from a single perspective image of an indoor scene. Previous methods for predicting indoor illumination usually focus on either simple, parametric lighting that lack realism, or on richer representations that are difficult or even impossible to understand or modify after prediction. We propose a pipeline that estimates a parametric light that is easy to edit and allows renderings with strong shadows, alongside with a non-parametric texture with high-frequency information necessary for realistic rendering of specular objects. Once estimated, the predictions obtained with our model are interpretable and can easily be modified by an artist/user with a few mouse clicks. Quantitative and qualitative results show that our approach makes indoor lighting estimation easier to handle by a casual user, while still producing competitive results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Available within Blender at https://www.blender.org.
- 3.
Implementation taken from https://pypi.org/project/pytorch-fid/.
References
Bai, J., et al.: Deep graph learning for spatially-varying indoor lighting prediction. arXiv preprint arXiv:2202.06300 (2022)
Barron, J.T., Malik, J.: Shape, illumination, and reflectance from shading. IEEE TPAMI 37(8), 1670–1687 (2014)
Cheng, D., Shi, J., Chen, Y., Deng, X., Zhang, X.: Learning scene illumination by pairwise photos from rear and front mobile cameras. Comput. Graph. Forum 37(7), 213–221 (2018)
Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: Stargan v2: diverse image synthesis for multiple domains. In: CVPR (2020)
Cruz, S., Hutchcroft, W., Li, Y., Khosravan, N., Boyadzhiev, I., Kang, S.B.: Zillow indoor dataset: annotated floor plans with 360o̱ panoramas and 3D room layouts. In: CVPR (2021)
Debevec, P.: Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 189–198. SIGGRAPH (1998)
Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2650–2658 (2015)
Einabadi, F., Guillemaut, J.Y., Hilton, A.: Deep neural models for illumination estimation and relighting: a survey. Comput. Graph. Forum 40(6), 315–331 (2021)
Fernandez-Labrador, C., Facil, J.M., Perez-Yus, A., Demonceaux, C., Civera, J., Guerrero, J.J.: Corners for layout: End-to-end layout recovery from 360 images. IEEE Rob. Autom. Lett. 5(2), 1255–1262 (2020)
Gardner, M.A., Hold-Geoffroy, Y., Sunkavalli, K., Gagne, C., Lalonde, J.F.: Deep parametric indoor lighting estimation. In: ICCV (2019)
Gardner, M.A., et al.: Learning to predict indoor illumination from a single image. ACM TOG 36(6) (2017)
Garon, M., Sunkavalli, K., Hadap, S., Carr, N., Lalonde, J.F.: Fast spatially-varying indoor lighting estimation. In: CVPR (2019)
Grosse, R., Johnson, M.K., Adelson, E.H., Freeman, W.T.: Ground truth dataset and baseline evaluations for intrinsic image algorithms. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2335–2342. IEEE (2009)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR (2017)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arxiv preprint arxiv:1412.6980 (2014)
Lee, C.Y., Badrinarayanan, V., Malisiewicz, T., Rabinovich, A.: Roomnet: end-to-end room layout estimation. In: ICCV (2017)
LeGendre, C., et al.: Deeplight: learning illumination for unconstrained mobile mixed reality. In: CVPR (2019)
Li, T.M., Aittala, M., Durand, F., Lehtinen, J.: Differentiable monte carlo ray tracing through edge sampling. ACM TOG 37(6), 1–11 (2018)
Li, Z., Shafiei, M., Ramamoorthi, R., Sunkavalli, K., Chandraker, M.: Inverse rendering for complex indoor scenes: shape, spatially-varying lighting and svbrdf from a single image. In: CVPR (2020)
Mandl, D., et al.: Learning lightprobes for mixed reality illumination. In: ISMAR (2017)
Park, T., Efros, A.A., Zhang, R., Zhu, J.-Y.: Contrastive learning for unpaired image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 319–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_19
Sengupta, S., Gu, J., Kim, K., Liu, G., Jacobs, D.W., Kautz, J.: Neural inverse rendering of an indoor scene from a single image. In: ICCV (2019)
Somanath, G., Kurz, D.: HDR environment map estimation for real-time augmented reality. In: CVPR (2021)
Song, S., Funkhouser, T.: Neural illumination: lighting prediction for indoor environments. In: CVPR (2019)
Srinivasan, P.P., Mildenhall, B., Tancik, M., Barron, J.T., Tucker, R., Snavely, N.: Lighthouse: predicting lighting volumes for spatially-coherent illumination. In: CVPR (2020)
Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional gans. In: CVPR (2018)
Wang, Z., Philion, J., Fidler, S., Kautz, J.: Learning indoor inverse rendering with 3D spatially-varying lighting. In: ICCV (2021)
Weber, H., Prévost, D., Lalonde, J.F.: Learning to estimate indoor lighting from 3D objects. In: 3DV (2018)
Wiles, O., Gkioxari, G., Szeliski, R., Johnson, J.: Synsin: end-to-end view synthesis from a single image. In: CVPR (2020)
Yang, C., Zheng, J., Dai, X., Tang, R., Ma, Y., Yuan, X.: Learning to reconstruct 3D non-cuboid room layout from a single rgb image. In: Winter Conference on Applications of Computer Vision (2022)
Zhan, F., et al.: Gmlight: lighting estimation via geometric distribution approximation. IEEE TIP 31, 2268–2278 (2022)
Zhan, F., et al.: Sparse needlets for lighting estimation with spherical transport loss. In: ICCV (2021)
Zhan, F., et al.: Emlight: lighting estimation via spherical distribution approximation. In: AAAI (2021)
Zhao, Y., Guo, T.: PointAR: efficient lighting estimation for mobile augmented reality. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 678–693. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_40
Zou, C., Colburn, A., Shan, Q., Hoiem, D.: Layoutnet: reconstructing the 3D room layout from a single rgb image. In: CVPR (2018)
Acknowledgements
This research was supported by MITACS and the NSERC grant RGPIN-2020-04799. The authors thank Pascal Audet for his help.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Weber, H., Garon, M., Lalonde, JF. (2022). Editable Indoor Lighting Estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13666. Springer, Cham. https://doi.org/10.1007/978-3-031-20068-7_39
Download citation
DOI: https://doi.org/10.1007/978-3-031-20068-7_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20067-0
Online ISBN: 978-3-031-20068-7
eBook Packages: Computer ScienceComputer Science (R0)