Abstract
We present LiDARGen, a novel, effective, and controllable generative model that produces realistic LiDAR point cloud sensory readings. Our method leverages the powerful score-matching energy-based model and formulates the point cloud generation process as a stochastic denoising process in the equirectangular view. This model allows us to sample diverse and high-quality point cloud samples with guaranteed physical feasibility and controllability. We validate the effectiveness of our method on the challenging KITTI-360 and NuScenes datasets. The quantitative and qualitative results show that our approach produces more realistic samples than other generative models. Furthermore, LiDARGen can sample point clouds conditioned on inputs without retraining. We demonstrate that our proposed generative model could be directly used to densify LiDAR point clouds. Our code is available at: https://www.zyrianov.org/lidargen/.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
some sensors return two beams for a small fraction of beams.
- 2.
we did not manage to make training converge in higher resolution.
References
Google’s waymo invests in lidar technology, cuts costs by 90 percent. https://arstechnica.com/cars/2017/01/googles-waymo-invests-in-lidar-technology-cuts-costs-by-90-percent/. Accessed 07 Mar 2012
Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations and generative models for 3d point clouds. In: ICML (2018)
Amini, A., et al.: Vista 2.0: an open, data-driven simulator for multimodal sensing and policy learning for autonomous vehicles. arXiv preprint arXiv:2111.12083 (2021)
Besag, J.: Statistical analysis of non-lattice data. J. Roy. Stat. Soc.: Ser. D (Stat.) 24(3), 179–195 (1975)
Caccia, L., van Hoof, H., Courville, A.C., Pineau, J.: Deep generative modeling of lidar data. In: IROS, pp. 5034–5040 (2019)
Caesar, H., et al.: nuscenes: a multimodal dataset for autonomous driving. arXiv preprint arXiv:1903.11027 (2019)
Cai, R., et al.: Learning gradient fields for shape generation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 364–381. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_22
Cao, C., Zhu, H., Choset, H., Zhang, J.: Tare: a hierarchical framework for efficiently exploring complex 3D environments. In: Robotics: Science and Systems Conference (RSS), Virtual (2021)
Carle, P.J., Furgale, P.T., Barfoot, T.D.: Long-range rover localization by matching lidar scans to orbital elevation maps. J. Field Rob. 27(3), 344–370 (2010)
Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. Technical Report. arXiv:1512.03012 [cs.GR], Stanford University – Princeton University – Toyota Technological Institute at Chicago (2015)
Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3d object detection network for autonomous driving. In: CVPR (2017)
Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_38
Cohen, T.S., Geiger, M., Köhler, J., Welling, M.: Spherical cnns. arXiv preprint arXiv:1801.10130 (2018)
Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16 (2017)
Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: CVPR (2017)
Fang, J.: Augmented lidar simulator for autonomous driving. IEEE Rob. Autom. Lett. 5(2), 1931–1938 (2020)
Gadelha, M., Wang, R., Maji, S.: Multiresolution tree networks for 3d point cloud processing. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 103–118 (2018)
Graham, B., Engelcke, M., Van Der Maaten, L.: 3D semantic segmentation with submanifold sparse convolutional networks. In: CVPR (2018)
Gusmão, G.F., Barbosa, C.R.H., Raposo, A.B.: Development and validation of lidar sensor simulators based on parallel raycasting. Sensors 20(24), 7186 (2020)
Han, Z., Wang, X., Liu, Y.S., Zwicker, M.: Multi-angle point cloud-vae: unsupervised feature learning for 3D point clouds from multiple angles by joint self-reconstruction and half-to-half prediction. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10441–10450. IEEE (2019)
Hazan, T., Keshet, J., McAllester, D.: Direct loss minimization for structured prediction. Adv. Neural Inf. Process. Syst. 23 (2010)
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
Hu, J.S., Waslander, S.L.: Pattern-aware data augmentation for lidar 3D object detection. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 2703–2710. IEEE (2021)
Hu, Q., et al.: Randla-net: efficient semantic segmentation of large-scale point clouds. In: CVPR (2020)
Hyvärinen, A.: Estimation of non-normalized statistical models by score matching. J. Mach. Learn. Res. 6, 695–709 (2005)
Hyvärinen, A.: Estimation of non-normalized statistical models by score matching. J. Mach. Learn. Res. 6(Apr), 695–709 (2005)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)
Kanezaki, A., Matsushita, Y., Nishida, Y.: Rotationnet: joint object categorization and pose estimation using multiviews from unsupervised viewpoints. In: CVPR (2018)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)
Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), vol. 3, pp. 2149–2154. IEEE (2004)
Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001)
Lafferty, J.D., McCallum, A., Pereira, F.C.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: ICML (2001)
Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars: fast encoders for object detection from point clouds. In: CVPR (2019)
Li, B., Zhang, T., Xia, T.: Vehicle detection from 3D lidar using fully convolutional network. In: RSS (2016)
Li, C.L., Zaheer, M., Zhang, Y., Poczos, B., Salakhutdinov, R.: Point cloud gan. arXiv preprint arXiv:1810.05795 (2018)
Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: Pointcnn: convolution on \(\cal{X} \)-transformed points. In: NIPS (2018)
Li, Y., Wen, C., Juefei-Xu, F., Feng, C.: Fooling lidar perception via adversarial trajectory perturbation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7898–7907 (2021)
Liao, Y., Xie, J., Geiger, A.: KITTI-360: a novel dataset and benchmarks for urban scene understanding in 2D and 3D. arXiv preprint arXiv:2109.13410 (2021)
Lin, Z., et al.: A structured self-attentive sentence embedding. In: ICLR (2017)
Liu, R., et al.: An intriguing failing of convolutional neural networks and the coordconv solution. Adv. Neural Inf. Process. Syst. 31 (2018)
Liu, Z., Tang, H., Lin, Y., Han, S.: Point-voxel CNN for efficient 3D deep learning. CoRR abs/1907.03739 (2019)
Liu, Z., Tang, H., Zhao, S., Shao, K., Han, S.: Pvnas: 3D neural architecture search with point-voxel convolution. IEEE Trans. Pattern Anal. Mach. Intell. (2021)
Luo, S., Hu, W.: Diffusion probabilistic models for 3D point cloud generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
Manivasagam, S., et al.: Lidarsim: realistic lidar simulation by leveraging the real world. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11167–11176 (2020)
Mao, J., Wang, X., Li, H.: Interpolated convolutional networks for 3D point cloud understanding. In: ICCV (2019)
Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: Rangenet++: fast and accurate lidar semantic segmentation. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4213–4220. IEEE (2019)
Nakashima, K., Kurazume, R.: Learning to drop points for lidar scan synthesis. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 222–229. IEEE (2021)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: CVPR (2017)
Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.: Volumetric and multi-view cnns for object classification on 3D data. In: CVPR (2016)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: NeurIPS (2017)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Sallab, A.E., Sobh, I., Zahran, M., Essam, N.: Lidar sensor modeling and data augmentation with gans for autonomous driving. arXiv preprint arXiv:1905.07290 (2019)
Sauer, A., Chitta, K., Müller, J., Geiger, A.: Projected gans converge faster. In: Advances in Neural Information Processing Systems (NeurIPS) (2021)
Schubert, S., Neubert, P., Pöschmann, J., Protzel, P.: Circular convolutional neural networks for panoramic images and laser data. In: 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 653–660 (2019)
Shu, D.W., Park, S.W., Kwon, J.: 3D point cloud generative adversarial network based on tree structured graph convolutions. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3859–3868 (2019)
Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional neural networks on graphs. In: CVPR (2017)
Sobczak, Ł, Filus, K., Domański, A., Domańska, J.: Lidar point cloud generation for slam algorithm evaluation. Sensors 21(10), 3313 (2021)
Song, Y., Ermon, S.: Generative modeling by estimating gradients of the data distribution. Adv. Neural Inf. Process. Syst. 32, 11895–11907 (2019)
Song, Y., Ermon, S.: Improved techniques for training score-based generative models. In: Advances in Neural Information Processing Systems (NeurIPS) (2020)
Song, Y., Garg, S., Shi, J., Ermon, S.: Sliced score matching: a scalable approach to density and score estimation. arXiv preprint arXiv:1905.07088 (2019)
Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-based generative modeling through stochastic differential equations. In: 9th International Conference on Learning Representations (ICLR) (2021)
Su, H., et al.: Splatnet: sparse lattice networks for point cloud processing. In: CVPR (2018)
Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.G.: Multi-view convolutional neural networks for 3D shape recognition. In: ICCV (2015)
Sun, Y., Wang, Y., Liu, Z., Siegel, J.E., Sarma, S.E.: Pointgrow: autoregressively learned point cloud generation with self-attention. arXiv preprint arXiv:1810.05591 (2018)
Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: Kpconv: flexible and deformable convolution for point clouds. In: ICCV (2019)
Valsesia, D., Fracastoro, G., Magli, E.: Learning localized generative models for 3D point clouds via graph convolution (2018)
Vincent, P.: A connection between score matching and denoising autoencoders. Neural Comput. 23(7), 1661–1674 (2011)
Wang, C., Samari, B., Siddiqi, K.: Local spectral graph convolution for point set feature learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 56–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_4
Wang, S., Suo, S., Ma, W.C., Pokrovsky, A., Urtasun, R.: Deep parametric continuous convolutional neural networks. In: CVPR (2018)
Wang, T.H., Amini, A., Schwarting, W., Gilitschenski, I., Karaman, S., Rus, D.: Learning interactive driving policies via data-driven simulation. arXiv preprint arXiv:2111.12137 (2021)
Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph cnn for learning on point clouds. TOG 38, 1–12 (2019)
Welling, M., Teh, Y.W.: Bayesian learning via stochastic gradient langevin dynamics. In: Proceedings of the 28th International Conference on Machine Learning (ICML-2011), pp. 681–688 (2011)
Wu, B., Wan, A., Yue, X., Keutzer, K.: Squeezeseg: convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3d lidar point cloud. CoRR abs/1710.07368 (2017)
Wu, W., Qi, Z., Fuxin, L.: Pointconv: deep convolutional networks on 3D point clouds. In: CVPR (2019)
Xiao, A., Huang, J., Guan, D., Zhan, F., Lu, S.: Synlidar: learning from synthetic lidar sequential point cloud for semantic segmentation. arXiv preprint arXiv:2107.05399 (2021)
Xu, Y., Fan, T., Xu, M., Zeng, L., Qiao, Yu.: SpiderCNN: deep learning on point sets with parameterized convolutional filters. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 90–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_6
Yang, B., Luo, W., Urtasun, R.: Pixor: real-time 3D object detection from point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7652–7660 (2018)
Yang, G., Huang, X., Hao, Z., Liu, M.Y., Belongie, S., Hariharan, B.: Pointflow: 3D point cloud generation with continuous normalizing flows. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4541–4550 (2019)
Yang, M., Dai, B., Dai, H., Schuurmans, D.: Energy-based processes for exchangeable data. In: International Conference on Machine Learning, pp. 10681–10692. PMLR (2020)
Yu, L., Li, X., Fu, C.W., Cohen-Or, D., Heng, P.A.: Pu-net: point cloud upsampling network. In: CVPR (2018)
Yuan, Y., Wang, J.: Ocnet: object context network for scene parsing. arXiv:1809.00916 (2018)
Zamorski, M., Zieba, M., Nowak, R., Stokowiec, W., Trzcinski, T.: Adversarial autoencoders for generating 3D point clouds, vol. 2. arXiv preprint arXiv:1811.07605 (2018)
Zamorski, M., Zieba, M., Nowak, R., Stokowiec, W., Trzciński, T.: Adversarial autoencoders for generating 3D point clouds. arXiv preprint arXiv:1811.07605 (2018)
Zhang, J., Singh, S.: Loam: lidar odometry and mapping in real-time. In: Robotics: Science and Systems, Berkeley, CA, vol. 2, pp. 1–9 (2014)
Zhao, H., Jiang, L., Fu, C.W., Jia, J.: PointWeb: enhancing local neighborhood features for point cloud processing. In: CVPR (2019)
Acknowledgement
The authors thank Wei-Chiu Ma and Zhijian Liu for their feedback on early drafts and all the participants in the human perceptual quality study. The project is partially funded by the Illinois Smart Transportation Initiative STII-21-07. We also thank Nvidia for the Academic Hardware Grant.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 2 (mp4 8495 KB)
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zyrianov, V., Zhu, X., Wang, S. (2022). Learning to Generate Realistic LiDAR Point Clouds. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13683. Springer, Cham. https://doi.org/10.1007/978-3-031-20050-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-20050-2_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20049-6
Online ISBN: 978-3-031-20050-2
eBook Packages: Computer ScienceComputer Science (R0)