Learning to Generate Realistic LiDAR Point Clouds | SpringerLink
Skip to main content

Learning to Generate Realistic LiDAR Point Clouds

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13683))

Included in the following conference series:

Abstract

We present LiDARGen, a novel, effective, and controllable generative model that produces realistic LiDAR point cloud sensory readings. Our method leverages the powerful score-matching energy-based model and formulates the point cloud generation process as a stochastic denoising process in the equirectangular view. This model allows us to sample diverse and high-quality point cloud samples with guaranteed physical feasibility and controllability. We validate the effectiveness of our method on the challenging KITTI-360 and NuScenes datasets. The quantitative and qualitative results show that our approach produces more realistic samples than other generative models. Furthermore, LiDARGen can sample point clouds conditioned on inputs without retraining. We demonstrate that our proposed generative model could be directly used to densify LiDAR point clouds. Our code is available at: https://www.zyrianov.org/lidargen/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    some sensors return two beams for a small fraction of beams.

  2. 2.

    we did not manage to make training converge in higher resolution.

References

  1. Google’s waymo invests in lidar technology, cuts costs by 90 percent. https://arstechnica.com/cars/2017/01/googles-waymo-invests-in-lidar-technology-cuts-costs-by-90-percent/. Accessed 07 Mar 2012

  2. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations and generative models for 3d point clouds. In: ICML (2018)

    Google Scholar 

  3. Amini, A., et al.: Vista 2.0: an open, data-driven simulator for multimodal sensing and policy learning for autonomous vehicles. arXiv preprint arXiv:2111.12083 (2021)

  4. Besag, J.: Statistical analysis of non-lattice data. J. Roy. Stat. Soc.: Ser. D (Stat.) 24(3), 179–195 (1975)

    Google Scholar 

  5. Caccia, L., van Hoof, H., Courville, A.C., Pineau, J.: Deep generative modeling of lidar data. In: IROS, pp. 5034–5040 (2019)

    Google Scholar 

  6. Caesar, H., et al.: nuscenes: a multimodal dataset for autonomous driving. arXiv preprint arXiv:1903.11027 (2019)

  7. Cai, R., et al.: Learning gradient fields for shape generation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 364–381. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_22

    Chapter  Google Scholar 

  8. Cao, C., Zhu, H., Choset, H., Zhang, J.: Tare: a hierarchical framework for efficiently exploring complex 3D environments. In: Robotics: Science and Systems Conference (RSS), Virtual (2021)

    Google Scholar 

  9. Carle, P.J., Furgale, P.T., Barfoot, T.D.: Long-range rover localization by matching lidar scans to orbital elevation maps. J. Field Rob. 27(3), 344–370 (2010)

    Article  Google Scholar 

  10. Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. Technical Report. arXiv:1512.03012 [cs.GR], Stanford University – Princeton University – Toyota Technological Institute at Chicago (2015)

  11. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3d object detection network for autonomous driving. In: CVPR (2017)

    Google Scholar 

  12. Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_38

    Chapter  Google Scholar 

  13. Cohen, T.S., Geiger, M., Köhler, J., Welling, M.: Spherical cnns. arXiv preprint arXiv:1801.10130 (2018)

  14. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16 (2017)

    Google Scholar 

  15. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: CVPR (2017)

    Google Scholar 

  16. Fang, J.: Augmented lidar simulator for autonomous driving. IEEE Rob. Autom. Lett. 5(2), 1931–1938 (2020)

    Article  Google Scholar 

  17. Gadelha, M., Wang, R., Maji, S.: Multiresolution tree networks for 3d point cloud processing. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 103–118 (2018)

    Google Scholar 

  18. Graham, B., Engelcke, M., Van Der Maaten, L.: 3D semantic segmentation with submanifold sparse convolutional networks. In: CVPR (2018)

    Google Scholar 

  19. Gusmão, G.F., Barbosa, C.R.H., Raposo, A.B.: Development and validation of lidar sensor simulators based on parallel raycasting. Sensors 20(24), 7186 (2020)

    Article  Google Scholar 

  20. Han, Z., Wang, X., Liu, Y.S., Zwicker, M.: Multi-angle point cloud-vae: unsupervised feature learning for 3D point clouds from multiple angles by joint self-reconstruction and half-to-half prediction. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10441–10450. IEEE (2019)

    Google Scholar 

  21. Hazan, T., Keshet, J., McAllester, D.: Direct loss minimization for structured prediction. Adv. Neural Inf. Process. Syst. 23 (2010)

    Google Scholar 

  22. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hu, J.S., Waslander, S.L.: Pattern-aware data augmentation for lidar 3D object detection. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 2703–2710. IEEE (2021)

    Google Scholar 

  24. Hu, Q., et al.: Randla-net: efficient semantic segmentation of large-scale point clouds. In: CVPR (2020)

    Google Scholar 

  25. Hyvärinen, A.: Estimation of non-normalized statistical models by score matching. J. Mach. Learn. Res. 6, 695–709 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Hyvärinen, A.: Estimation of non-normalized statistical models by score matching. J. Mach. Learn. Res. 6(Apr), 695–709 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  28. Kanezaki, A., Matsushita, Y., Nishida, Y.: Rotationnet: joint object categorization and pose estimation using multiviews from unsupervised viewpoints. In: CVPR (2018)

    Google Scholar 

  29. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)

    Google Scholar 

  30. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), vol. 3, pp. 2149–2154. IEEE (2004)

    Google Scholar 

  31. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lafferty, J.D., McCallum, A., Pereira, F.C.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: ICML (2001)

    Google Scholar 

  33. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars: fast encoders for object detection from point clouds. In: CVPR (2019)

    Google Scholar 

  34. Li, B., Zhang, T., Xia, T.: Vehicle detection from 3D lidar using fully convolutional network. In: RSS (2016)

    Google Scholar 

  35. Li, C.L., Zaheer, M., Zhang, Y., Poczos, B., Salakhutdinov, R.: Point cloud gan. arXiv preprint arXiv:1810.05795 (2018)

  36. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: Pointcnn: convolution on \(\cal{X} \)-transformed points. In: NIPS (2018)

    Google Scholar 

  37. Li, Y., Wen, C., Juefei-Xu, F., Feng, C.: Fooling lidar perception via adversarial trajectory perturbation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7898–7907 (2021)

    Google Scholar 

  38. Liao, Y., Xie, J., Geiger, A.: KITTI-360: a novel dataset and benchmarks for urban scene understanding in 2D and 3D. arXiv preprint arXiv:2109.13410 (2021)

  39. Lin, Z., et al.: A structured self-attentive sentence embedding. In: ICLR (2017)

    Google Scholar 

  40. Liu, R., et al.: An intriguing failing of convolutional neural networks and the coordconv solution. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  41. Liu, Z., Tang, H., Lin, Y., Han, S.: Point-voxel CNN for efficient 3D deep learning. CoRR abs/1907.03739 (2019)

    Google Scholar 

  42. Liu, Z., Tang, H., Zhao, S., Shao, K., Han, S.: Pvnas: 3D neural architecture search with point-voxel convolution. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  43. Luo, S., Hu, W.: Diffusion probabilistic models for 3D point cloud generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  44. Manivasagam, S., et al.: Lidarsim: realistic lidar simulation by leveraging the real world. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11167–11176 (2020)

    Google Scholar 

  45. Mao, J., Wang, X., Li, H.: Interpolated convolutional networks for 3D point cloud understanding. In: ICCV (2019)

    Google Scholar 

  46. Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: Rangenet++: fast and accurate lidar semantic segmentation. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4213–4220. IEEE (2019)

    Google Scholar 

  47. Nakashima, K., Kurazume, R.: Learning to drop points for lidar scan synthesis. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 222–229. IEEE (2021)

    Google Scholar 

  48. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: CVPR (2017)

    Google Scholar 

  49. Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.: Volumetric and multi-view cnns for object classification on 3D data. In: CVPR (2016)

    Google Scholar 

  50. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: NeurIPS (2017)

    Google Scholar 

  51. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  52. Sallab, A.E., Sobh, I., Zahran, M., Essam, N.: Lidar sensor modeling and data augmentation with gans for autonomous driving. arXiv preprint arXiv:1905.07290 (2019)

  53. Sauer, A., Chitta, K., Müller, J., Geiger, A.: Projected gans converge faster. In: Advances in Neural Information Processing Systems (NeurIPS) (2021)

    Google Scholar 

  54. Schubert, S., Neubert, P., Pöschmann, J., Protzel, P.: Circular convolutional neural networks for panoramic images and laser data. In: 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 653–660 (2019)

    Google Scholar 

  55. Shu, D.W., Park, S.W., Kwon, J.: 3D point cloud generative adversarial network based on tree structured graph convolutions. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3859–3868 (2019)

    Google Scholar 

  56. Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional neural networks on graphs. In: CVPR (2017)

    Google Scholar 

  57. Sobczak, Ł, Filus, K., Domański, A., Domańska, J.: Lidar point cloud generation for slam algorithm evaluation. Sensors 21(10), 3313 (2021)

    Article  Google Scholar 

  58. Song, Y., Ermon, S.: Generative modeling by estimating gradients of the data distribution. Adv. Neural Inf. Process. Syst. 32, 11895–11907 (2019)

    Google Scholar 

  59. Song, Y., Ermon, S.: Improved techniques for training score-based generative models. In: Advances in Neural Information Processing Systems (NeurIPS) (2020)

    Google Scholar 

  60. Song, Y., Garg, S., Shi, J., Ermon, S.: Sliced score matching: a scalable approach to density and score estimation. arXiv preprint arXiv:1905.07088 (2019)

  61. Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-based generative modeling through stochastic differential equations. In: 9th International Conference on Learning Representations (ICLR) (2021)

    Google Scholar 

  62. Su, H., et al.: Splatnet: sparse lattice networks for point cloud processing. In: CVPR (2018)

    Google Scholar 

  63. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.G.: Multi-view convolutional neural networks for 3D shape recognition. In: ICCV (2015)

    Google Scholar 

  64. Sun, Y., Wang, Y., Liu, Z., Siegel, J.E., Sarma, S.E.: Pointgrow: autoregressively learned point cloud generation with self-attention. arXiv preprint arXiv:1810.05591 (2018)

  65. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: Kpconv: flexible and deformable convolution for point clouds. In: ICCV (2019)

    Google Scholar 

  66. Valsesia, D., Fracastoro, G., Magli, E.: Learning localized generative models for 3D point clouds via graph convolution (2018)

    Google Scholar 

  67. Vincent, P.: A connection between score matching and denoising autoencoders. Neural Comput. 23(7), 1661–1674 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  68. Wang, C., Samari, B., Siddiqi, K.: Local spectral graph convolution for point set feature learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 56–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_4

    Chapter  Google Scholar 

  69. Wang, S., Suo, S., Ma, W.C., Pokrovsky, A., Urtasun, R.: Deep parametric continuous convolutional neural networks. In: CVPR (2018)

    Google Scholar 

  70. Wang, T.H., Amini, A., Schwarting, W., Gilitschenski, I., Karaman, S., Rus, D.: Learning interactive driving policies via data-driven simulation. arXiv preprint arXiv:2111.12137 (2021)

  71. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph cnn for learning on point clouds. TOG 38, 1–12 (2019)

    Google Scholar 

  72. Welling, M., Teh, Y.W.: Bayesian learning via stochastic gradient langevin dynamics. In: Proceedings of the 28th International Conference on Machine Learning (ICML-2011), pp. 681–688 (2011)

    Google Scholar 

  73. Wu, B., Wan, A., Yue, X., Keutzer, K.: Squeezeseg: convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3d lidar point cloud. CoRR abs/1710.07368 (2017)

    Google Scholar 

  74. Wu, W., Qi, Z., Fuxin, L.: Pointconv: deep convolutional networks on 3D point clouds. In: CVPR (2019)

    Google Scholar 

  75. Xiao, A., Huang, J., Guan, D., Zhan, F., Lu, S.: Synlidar: learning from synthetic lidar sequential point cloud for semantic segmentation. arXiv preprint arXiv:2107.05399 (2021)

  76. Xu, Y., Fan, T., Xu, M., Zeng, L., Qiao, Yu.: SpiderCNN: deep learning on point sets with parameterized convolutional filters. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 90–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_6

    Chapter  Google Scholar 

  77. Yang, B., Luo, W., Urtasun, R.: Pixor: real-time 3D object detection from point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7652–7660 (2018)

    Google Scholar 

  78. Yang, G., Huang, X., Hao, Z., Liu, M.Y., Belongie, S., Hariharan, B.: Pointflow: 3D point cloud generation with continuous normalizing flows. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4541–4550 (2019)

    Google Scholar 

  79. Yang, M., Dai, B., Dai, H., Schuurmans, D.: Energy-based processes for exchangeable data. In: International Conference on Machine Learning, pp. 10681–10692. PMLR (2020)

    Google Scholar 

  80. Yu, L., Li, X., Fu, C.W., Cohen-Or, D., Heng, P.A.: Pu-net: point cloud upsampling network. In: CVPR (2018)

    Google Scholar 

  81. Yuan, Y., Wang, J.: Ocnet: object context network for scene parsing. arXiv:1809.00916 (2018)

  82. Zamorski, M., Zieba, M., Nowak, R., Stokowiec, W., Trzcinski, T.: Adversarial autoencoders for generating 3D point clouds, vol. 2. arXiv preprint arXiv:1811.07605 (2018)

  83. Zamorski, M., Zieba, M., Nowak, R., Stokowiec, W., Trzciński, T.: Adversarial autoencoders for generating 3D point clouds. arXiv preprint arXiv:1811.07605 (2018)

  84. Zhang, J., Singh, S.: Loam: lidar odometry and mapping in real-time. In: Robotics: Science and Systems, Berkeley, CA, vol. 2, pp. 1–9 (2014)

    Google Scholar 

  85. Zhao, H., Jiang, L., Fu, C.W., Jia, J.: PointWeb: enhancing local neighborhood features for point cloud processing. In: CVPR (2019)

    Google Scholar 

Download references

Acknowledgement

The authors thank Wei-Chiu Ma and Zhijian Liu for their feedback on early drafts and all the participants in the human perceptual quality study. The project is partially funded by the Illinois Smart Transportation Initiative STII-21-07. We also thank Nvidia for the Academic Hardware Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlas Zyrianov .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2091 KB)

Supplementary material 2 (mp4 8495 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zyrianov, V., Zhu, X., Wang, S. (2022). Learning to Generate Realistic LiDAR Point Clouds. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13683. Springer, Cham. https://doi.org/10.1007/978-3-031-20050-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20050-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20049-6

  • Online ISBN: 978-3-031-20050-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics