A Meta-Probabilistic-Programming Language for Bisimulation of Probabilistic and Non-Well-Founded Type Systems | SpringerLink
Skip to main content

A Meta-Probabilistic-Programming Language for Bisimulation of Probabilistic and Non-Well-Founded Type Systems

  • Conference paper
  • First Online:
Artificial General Intelligence (AGI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13539))

Included in the following conference series:

Abstract

We introduce a formal meta-language for probabilistic programming, capable of expressing both programs and the type systems in which they are embedded. We are motivated here by the desire to allow an AGI to learn not only relevant knowledge (programs/proofs), but also appropriate ways of reasoning (logics/type systems). We draw on the frameworks of cubical type theory and dependent typed metagraphs to formalize our approach. In doing so, we show that specific constructions within the meta-language can be related via bisimulation (implying path equivalence) to the type systems they correspond. This allows our approach to provide a convenient means of deriving synthetic denotational semantics for various type systems. Particularly, we derive bisimulations for pure type systems (PTS), and probabilistic dependent type systems (PDTS). We discuss further the relationship of PTS to non-well-founded set theory, and demonstrate the feasibility of our approach with an implementation of a bisimulation proof in a Guarded Cubical Type Theory type checker.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT press (2008)

    Google Scholar 

  2. Barendregt, H., Augustsson, L.: Lambda calculi with types. Handb. Log. Comput. Sci. 34, 239–250 (1992)

    Google Scholar 

  3. Barwise, J., Moss, L.: Vicious circles: on the mathematics of non-wellfounded phenomena (1996)

    Google Scholar 

  4. Birkedal, L., Bizjak, A., Clouston, R., Grathwohl, H.B., Spitters, B., Vezzosi, A.: Guarded cubical type theory: path equality for guarded recursion. arXiv preprint arXiv:1606.05223 (2016)

  5. Goertzel, B.: Modeling uncertain self-referential semantics with infinite-order probabilities (2008)

    Google Scholar 

  6. Goertzel, B.: Folding and unfolding on metagraphs. arXiv preprint arXiv:2012.01759 (2020)

  7. Goertzel, B.: Paraconsistent foundations for probabilistic reasoning, programming and concept formation. arXiv preprint arXiv:2012.14474 (2020)

  8. Goertzel, B.: Reflective metagraph rewriting as a foundation for an AGI ‘language of thought’. arXiv preprint arXiv:2112.08272 (2021)

  9. Harper, R.: Notes on logical frameworks. Lect. Notes, Insts. Adv. Study Nov 29, 34 (2012)

    Google Scholar 

  10. Møgelberg, R.E., Veltri, N.: Bisimulation as path type for guarded recursive types. Proc. ACM on Program. Lang. 3(POPL), 1–29 (2019)

    Article  Google Scholar 

  11. Møgelberg, R.E., Paviotti, M.: Denotational semantics of recursive types in synthetic guarded domain theory. Math. Struct. Comput. Sci. 29(3), 465–510 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mokhov, A.: Algebraic graphs with class (functional pearl). ACM SIGPLAN Not. 52(10), 2–13 (2017)

    Article  Google Scholar 

  13. Paviotti, M., Møgelberg, R.E., Birkedal, L.: A model of PCF in guarded type theory. Electron. Notes Theor. Comput. Sci. 319, 333–349 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Potapov, A.: MeTTa language specification (2021). https://wiki.opencog.org/w/Hyperon

  15. Staton, S., Wood, F., Yang, H., Heunen, C., Kammar, O.: Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints. In: 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–10 (2016)

    Google Scholar 

  16. TrueAGI. Hyperon-experimental repository (2021). https://github.com/trueagi-io/hyperon-experimental

  17. Veltri, N., Vezzosi, A.: Formalizing \(\pi \)-calculus in guarded cubical Agda. In: Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, pp. 270–283 (2020)

    Google Scholar 

  18. Vezzosi, A., Mörtberg, A., Abel, A.: Cubical Agda: a dependently typed programming language with univalence and higher inductive types. J. Funct. Program. 31, 1–29 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Warrell, J., Gerstein, M.: Dependent type networks: a probabilistic logic via the curry-howard correspondence in a system of probabilistic dependent types. In: Uncertainty in Artificial Intelligence, Workshop on Uncertainty in Deep Learning (2018). http://www.gatsby.ucl.ac.uk/~balaji/udl-camera-ready/UDL-19.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Warrell .

Editor information

Editors and Affiliations

Appendices

Appendices

A Proof of Bisimulation for Small-Scale Type System in a Guarded Cubical Type Theory Type Checker

Below, we provide the code for the example discussed in Sect. 5, which uses a Haskell-based GCTT type checker [4]. The code for this example is also provided at: https://github.com/jwarrell/metta_bisimulation.

figure f
figure g
figure h

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Warrell, J., Potapov, A., Vandervorst, A., Goertzel, B. (2023). A Meta-Probabilistic-Programming Language for Bisimulation of Probabilistic and Non-Well-Founded Type Systems. In: Goertzel, B., Iklé, M., Potapov, A., Ponomaryov, D. (eds) Artificial General Intelligence. AGI 2022. Lecture Notes in Computer Science(), vol 13539. Springer, Cham. https://doi.org/10.1007/978-3-031-19907-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19907-3_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19906-6

  • Online ISBN: 978-3-031-19907-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics