Abstract
Differentiable renderers provide a direct mathematical link between an object’s 3D representation and images of that object. In this work, we develop an approximate differentiable renderer for a compact, interpretable representation, which we call Fuzzy Metaballs. Our approximate renderer focuses on rendering shapes via depth maps and silhouettes. It sacrifices fidelity for utility, producing fast runtimes and high-quality gradient information that can be used to solve vision tasks. Compared to mesh-based differentiable renderers, our method has forward passes that are 5x faster and backwards passes that are 30x faster. The depth maps and silhouette images generated by our method are smooth and defined everywhere. In our evaluation of differentiable renderers for pose estimation, we show that our method is the only one comparable to classic techniques. In shape from silhouette, our method performs well using only gradient descent and a per-pixel loss, without any surrogate losses or regularization. These reconstructions work well even on natural video sequences with segmentation artifacts. Project page: https://leonidk.github.io/fuzzy-metaballs
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Unbiased gradient estimation for differentiable surface splatting via Poisson sampling. In: European Conference on Computer Vision (ECCV) (2022)
Adams, B., Lenaert, T., Dutré, P.: Particle splatting: interactive rendering of particle-based simulation data. Report CW 453, KU Leuven, July 2006. https://www.cs.kuleuven.be/publicaties/rapporten/cw/CW453.abs.html
Agin, G.J.: Representation and Description of Curved Objects. Ph.D. thesis, Stanford University, CA, USA (1972)
Bangaru, S., Li, T.M., Durand, F.: Unbiased warped-area sampling for differentiable rendering. ACM Trans. Graph. 39(6), 245:1–245:18 (2020)
Bell, C.G., Fujisaki, H., Heinz, J.M., Stevens, K.N., House, A.S.: Reduction of speech spectra by analysis-by-synthesis techniques. J. Acoust. Soc. Am. 33(12), 1725–1736 (1961). https://doi.org/10.1121/1.1908556
Blinn, J.F.: A generalization of algebraic surface drawing. ACM Trans. Graph. 1(3), 235–256 (1982). https://doi.org/10.1145/357306.357310
Blinn, J.F.: How to solve a cubic equation, part 5: back to numerics. IEEE Comput. Graph. Appl. 27(3), 78–89 (2007). https://doi.org/10.1109/MCG.2007.60
Bradbury, J., et al.: JAX: composable transformations of Python+NumPy programs (2018). https://github.com/google/jax
Brubaker, M., Punjani, A., Fleet, D.: Building proteins in a day. CVPR (2015). https://doi.org/10.1109/cvpr.2015.7298929
Chen, W., et al.: Learning to predict 3D objects with an interpolation-based differentiable renderer. Adv. Neural Inf. Process. Syst. 32 (2019)
Cheung, K.M.G., Baker, S., Kanade, T.: Shape-from-silhouette across time part I: theory and algorithms. Int. J. Comput. Vis. 62(3), 221–247 (2005). https://doi.org/10.1007/s11263-005-4881-5
Cole, F., Genova, K., Sud, A., Vlasic, D., Zhang, Z.: Differentiable surface rendering via non-differentiable sampling (2021)
Dempster, A., Laird, N., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc. (B) 39(1), 1–38 (1977). https://doi.org/10.2307/2984875
Eckart, B., Kim, K., Kautz, J.: HGMR: hierarchical gaussian mixtures for adaptive 3D registration. In: ECCV 2018, pp. 730–746 (2018)
Eckart, B., Kim, K., Troccoli, A., Kelly, A., Kautz, J.: MLMD: maximum likelihood mixture decoupling for fast and accurate point cloud registration. In: 3DV, pp. 241–249 (2015). https://doi.org/10.1109/3DV.2015.34
Eckart, B., Kim, K., Troccoli, A., Kelly, A., Kautz, J.: Accelerated generative models for 3D point cloud data. In: CVPR, pp. 5497–5505 (2016). https://doi.org/10.1109/CVPR.2016.593
Enderton, E., Sintorn, E., Shirley, P., Luebke, D.: Stochastic transparency. In: I3D 2010: Proceedings of the 2010 Symposium on Interactive 3D Graphics and Games, pp. 157–164. New York, NY, USA (2010)
Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: SIGGRAPH, pp. 209–216 (1997). https://doi.org/10.1145/258734.258849
Genova, K., Cole, F., Sud, A., Sarna, A., Funkhouser, T.: Local deep implicit functions for 3D shape (2020)
Gourmel, O., Pajot, A., Paulin, M., Barthe, L., Poulin, P.: Fitted BVH for fast raytracing of metaballs. Comput. Graph. Forum 3, 7–288 (2010)
He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)
Heckbert, P.S.: Fun with gaussians. In: SIGGRAPH 1986 Advanced Image Processing Seminar Notes (1986)
Hertz, A., Hanocka, R., Giryes, R., Cohen-Or, D.: PointGMM: a neural GMM network for point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)
Horvath, R.: Image-Space Metaballs Using Deep Learning. Master’s thesis, Faculty of Informatics, TU Wien, July 2019. https://www.cg.tuwien.ac.at/research/publications/2019/horvath-2018-ism/
Huang, H., Ye, H., Sun, Y., Liu, M.: GMMLoc: structure consistent visual localization with gaussian mixture models. IEEE Robot. Autom. Lett. 5(4), 5043–5050 (2020). https://doi.org/10.1109/LRA.2020.3005130
Insafutdinov, E., Dosovitskiy, A.: Unsupervised learning of shape and pose with differentiable point clouds (2018)
Kaasalainen, M., Torppa, J.: Optimization methods for asteroid lightcurve inversion. Icarus 153(1), 24–36 (2001)
Kato, H., Ushiku, Y., Harada, T.: Neural 3D mesh renderer (2017)
Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Sheffer, A., Polthier, K. (eds.) Symposium on Geometry Processing. The Eurographics Association (2006). https://doi.org/10.2312/SGP/SGP06/061-070
Keselman, L., Hebert, M.: Direct fitting of gaussian mixture models. In: 2019 16th Conference on Computer and Robot Vision (CRV), pp. 25–32 (2019). https://doi.org/10.1109/CRV.2019.00012
Keselman, L., Woodfill, J.I., Grunnet-Jepsen, A., Bhowmik, A.: Intel realsense stereoscopic depth cameras. CoRR abs/1705.05548 (2017). arxiv:1705.05548
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (Poster) (2015). arxiv:1412.6980
Laine, S., Hellsten, J., Karras, T., Seol, Y., Lehtinen, J., Aila, T.: Modular primitives for high-performance differentiable rendering. ACM Trans. Graph. 39(6), 1–14 (2020)
Lassner, C., Zollhöfer, M.: Pulsar: efficient sphere-based neural rendering. arXiv:2004.07484 (2020)
Levoy, M., Gerth, J., Curless, B., Pull, K.: The Stanford 3D scanning repository 5(10) (2005). https://graphics.stanford.edu/data/3Dscanrep/
Li, L., Zhu, S., Fu, H., Tan, P., Tai, C.L.: End-to-end learning local multi-view descriptors for 3D point clouds (2020)
Lin, C.H., Kong, C., Lucey, S.: Learning efficient point cloud generation for dense 3D object reconstruction. In: AAAI Conference on Artificial Intelligence (AAAI) (2018)
Liu, S., Li, T., Chen, W., Li, H.: Soft rasterizer: a differentiable renderer for image-based 3D reasoning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019
Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.: Neural volumes: learning dynamic renderable volumes from images. ACM Trans. Graph. 38(4), 65:1–65:14 (2019)
Loper, M.M., Black, M.J.: OpenDR: an approximate differentiable renderer. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 154–169. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_11
Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput. Graph. 21(4), 163–169 (1987)
Mahalanobis, P.C.: On the generalized distance in statistics. In: Proceedings of the National Institute of Sciences (Calcutta), pp. 49–55 (1936)
Martin, W.N., Aggarwal, J.K.: Volumetric descriptions of objects from multiple views. IEEE Trans. Patt. Anal. Mach. Intell. PAMI-5(2), 150–158 (1983). https://doi.org/10.1109/TPAMI.1983.4767367
Max, N.: Optical models for direct volume rendering. IEEE Trans. Visual. Comput. Graph. 1(2), 99–108 (1995). https://doi.org/10.1109/2945.468400
McGuire, M., Bavoil, L.: Weighted blended order-independent transparency. J. Comput. Graph. Tech. (JCGT) 2(2), 122–141 (2013). https://jcgt.org/published/0002/02/09/
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NERF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer Vision - ECCV 2020, pp. 405–421. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24
Miller, I.D., et al.: Mine tunnel exploration using multiple quadrupedal robots (2020)
Muraki, S.: Volumetric shape description of range data using “blobby model”. In: Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, pp. 227–235. SIGGRAPH 1991. Association for Computing Machinery, New York, NY, USA (1991). https://doi.org/10.1145/122718.122743
Nimier-David, M., Vicini, D., Zeltner, T., Jakob, W.: Mitsuba 2: a retargetable forward and inverse renderer. ACM Trans. Graph. 38(6) (2019). https://doi.org/10.1145/3355089.3356498
O’Meadhra, C., Tabib, W., Michael, N.: Variable resolution occupancy mapping using Gaussian mixture models. IEEE Robot. Autom. Lett. 4(2), 2015–2022 (2019). https://doi.org/10.1109/LRA.2018.2889348
Pfister, H., Zwicker, M., van Baar, J., Gross, M.: Surfels: surface elements as rendering primitives. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 335–342. SIGGRAPH 2000. ACM Press/Addison-Wesley Publishing Co., USA (2000). https://doi.org/10.1145/344779.344936
Ravi, N., et al.: Accelerating 3D deep learning with pytorch3d. arXiv:2007.08501 (2020)
Reizenstein, J., Shapovalov, R., Henzler, P., Sbordone, L., Labatut, P., Novotny, D.: Common objects in 3D: large-scale learning and evaluation of real-life 3D category reconstruction. In: International Conference on Computer Vision (2021)
Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proceedings Third International Conference on 3D Digital Imaging & Modeling, pp. 145–152 (2001). https://doi.org/10.1109/IM.2001.924423
Schönberger, J.L., Zheng, E., Pollefeys, M., Frahm, J.M.: Pixelwise view selection for unstructured multi-view stereo. In: European Conference on Computer Vision (ECCV) (2016). https://doi.org/10.1007/978-3-319-46487-9_31
Sculley, D.: Web-scale k-means clustering. In: Proceedings of the 19th International Conference on World Wide Web, pp. 1177–1178. WWW 2010. Association for Computing Machinery, New York, NY, USA (2010). https://doi.org/10.1145/1772690.1772862
Shankar, K.S., Michael, N.: MRFMap: online probabilistic 3D mapping using forward ray sensor models. In: Robotics: Science and Systems (2020)
Sutherland, I.E., Sproull, R.F., Schumacker, R.A.: A characterization of ten hidden-surface algorithms. ACM Comput. Surv. 6(1), 1–55 (1974). https://doi.org/10.1145/356625.356626
Szécsi, L., Illés, D.: Real-time metaball ray casting with fragment lists. In: Eurographics (2012)
Tabib, W., O’Meadhra, C., Michael, N.: On-manifold GMM registration. IEEE Robot. Autom. Lett. 3(4), 3805–3812 (2018). https://doi.org/10.1109/LRA.2018.2856279
Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: 16th European Conference on Computer Vision, pp. 402–419, Germany (2020). https://doi.org/10.1007/978-3-030-58536-5_24
Teed, Z., Deng, J.: Droid-SLAM: deep visual SLAM for monocular, stereo, and RGB-D cameras (2021)
Tewari, A., et al.: MoFA: model-based deep convolutional face autoencoder for unsupervised monocular reconstruction. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 3735–3744 (2017). https://doi.org/10.1109/ICCV.2017.401
Tomic, T., et al.: Toward a fully autonomous UAV: research platform for indoor and outdoor urban search and rescue. IEEE Robot. Autom. Mag. 19(3), 46–56 (2012). https://doi.org/10.1109/MRA.2012.2206473
Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment – a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) Vision Algorithms: Theory and Practice, pp. 298–372. Springer, Berlin, Heidelberg (2000). https://doi.org/10.1007/3-540-44480-7_21
Tsai, C., Sankaranarayanan, A., Gkioulekas, I.: Beyond volumetric albedo. In: CVPR, June 2019
Tucker, R., Snavely, N.: Single-view view synthesis with multiplane images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 551–560 (2020)
Wang, A., Wang, P., Sun, J., Kortylewski, A., Yuille, A.: VoGE: a differentiable volume renderer using gaussian ellipsoids for analysis-by-synthesis. arXiv preprint arXiv:2205.15401 (2022)
Westman, E., Gkioulekas, I., Kaess, M.: Volumetric albedo framework for 3D imaging sonar. In: ICRA (2020)
Wyvill, G., McPheeters, C., Wyvill, B.: Data structure forsoft objects. Vis. Comput. 2(4), 227–234 (1986). https://doi.org/10.1007/BF01900346
Wyvill, G., Trotman, A.: Ray-tracing soft objects. In: Chua, T.S., Kunii, T.L. (eds.) CG International, pp. 469–476. Springer Japan, Tokyo (1990). https://doi.org/10.1007/978-4-431-68123-6_27
Yang, J., Li, H., Jia, Y.: Go-ICP: solving 3D registration efficiently and globally optimally. In: 2013 IEEE International Conference on Computer Vision, pp. 1457–1464 (2013). https://doi.org/10.1109/ICCV.2013.184
Yang, S., Scherer, S.: CubeSLAM: Monocular 3-D object slam. IEEE Trans. Rob. 35(4), 925–938 (2019). https://doi.org/10.1109/TRO.2019.2909168
Yifan, W., Serena, F., Wu, S., Öztireli, C., Sorkine-Hornung, O.: Differentiable surface splatting for point-based geometry processing. ACM Trans. Graph. 38(6), 1–14 (2019). https://doi.org/10.1145/3355089.3356513
Zhang, C., Miller, B., Yan, K., Gkioulekas, I., Zhao, S.: Path-space differentiable rendering. ACM Trans. Graph. 39(4), 143:1–143:19 (2020). https://doi.org/10.1145/3386569.3392383
Zhong, E.D., Lerer, A., Davis, J.H., Berger, B.: CryoDRGN2: Ab initio neural reconstruction of 3D protein structures from real cryo-EM images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4066–4075, October 2021
Zhou, Q.Y., Park, J., Koltun, V.: Open3D: a modern library for 3D data processing. arXiv:1801.09847 (2018)
Zhou, Q., Jacobson, A.: Thingi10k: a dataset of 10, 000 3D-printing models. CoRR abs/1605.04797 (2016). arxiv:1605.04797
Zwicker, M., Pfister, H., van Baar, J., Gross, M.: Surface splatting. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 371–378. SIGGRAPH 2001 (2001). https://doi.org/10.1145/383259.383300
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Keselman, L., Hebert, M. (2022). Approximate Differentiable Rendering with Algebraic Surfaces. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13692. Springer, Cham. https://doi.org/10.1007/978-3-031-19824-3_35
Download citation
DOI: https://doi.org/10.1007/978-3-031-19824-3_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19823-6
Online ISBN: 978-3-031-19824-3
eBook Packages: Computer ScienceComputer Science (R0)