CA-SSL: Class-Agnostic Semi-Supervised Learning for Detection and Segmentation | SpringerLink
Skip to main content

CA-SSL: Class-Agnostic Semi-Supervised Learning for Detection and Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13691))

Included in the following conference series:

Abstract

To improve instance-level detection/segmentation performance, existing self-supervised and semi-supervised methods extract either task-unrelated or task-specific training signals from unlabeled data. We show that these two approaches, at the two extreme ends of the task-specificity spectrum, are suboptimal for the task performance. Utilizing too little task-specific training signals causes underfitting to the ground-truth labels of downstream tasks, while the opposite causes overfitting to the ground-truth labels. To this end, we propose a novel Class-Agnostic Semi-Supervised Learning (CA-SSL) framework to achieve a more favorable task-specificity balance in extracting training signals from unlabeled data. CA-SSL has three training stages that act on either ground-truth labels (labeled data) or pseudo labels (unlabeled data). This decoupling strategy avoids the complicated scheme in traditional SSL methods that balances the contributions from both data types. Especially, we introduce a warmup training stage to achieve a more optimal balance in task specificity by ignoring class information in the pseudo labels, while preserving localization training signals. As a result, our warmup model can better avoid underfitting/overfitting when fine-tuned on the ground-truth labels in detection and segmentation tasks. Using 3.6M unlabeled data, we achieve a significant performance gain of \(4.7\%\) over ImageNet-pretrained baseline on FCOS object detection. In addition, our warmup model demonstrates excellent transferability to other detection and segmentation frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use FCOS [56] with ResNet50 backbone, a widely-used one-stage detector, to explore the performance gap between using class-specific and -agnostic labels. We follow its 36 epoch training setting widely adopted in detectron2 [60] or mmdetection [5].

References

  1. Berthelot, D., et al.: MixMatch: a holistic approach to semi-supervised learning. In: NeurlPS (2019)

    Google Scholar 

  2. et al, R.: Not all unlabeled data are equal: learning to weight data in semi-supervised learning. In: NeurlPS (2020)

    Google Scholar 

  3. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  4. Chen, K., et al.: Hybrid task cascade for instance segmentation. In: CVPR (2019)

    Google Scholar 

  5. Chen, K., et al.: MMDetection: open MMLab detection toolbox and benchmark (2019)

    Google Scholar 

  6. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv (2020)

    Google Scholar 

  7. Chen, X., Girshick, R., He, K., Dollár, P.: Tensormask: A foundation for dense object segmentation. In: ICCV (2019)

    Google Scholar 

  8. Chen, X., He, K.: Exploring simple Siamese representation learning. In: CVPR (2021)

    Google Scholar 

  9. Chen, Y., et al.: Scale-aware automatic augmentation for object detection. In: CVPR (2021)

    Google Scholar 

  10. Cheng, B., Schwing, A.G., Kirillov, A.: Per-pixel classification is not all you need for semantic segmentation. In: NeurlPS (2021)

    Google Scholar 

  11. Chu, R., Sun, Y., Li, Y., Liu, Z., Zhang, C., Wei, Y.: Vehicle re-identification with viewpoint-aware metric learning. In: ICCV (2019)

    Google Scholar 

  12. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016)

    Google Scholar 

  13. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: NeurIPS (2016)

    Google Scholar 

  14. Dai, Z., Cai, B., Lin, Y., Chen, J.: UP-DETR: unsupervised pre-training for object detection with transformers. In: CVPR (2021)

    Google Scholar 

  15. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  16. Dollár, P., Zitnick, C.L.: Fast edge detection using structured forests. PAMI 37, 1558–1570 (2015)

    Article  Google Scholar 

  17. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)

    Google Scholar 

  18. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR (2020)

    Google Scholar 

  19. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  21. Hénaff, O.J., Koppula, S., Alayrac, J.B., van den Oord, A., Vinyals, O., Carreira, J.: Efficient visual pretraining with contrastive detection. In: ICCV (2021)

    Google Scholar 

  22. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)

    Google Scholar 

  23. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR (2017)

    Google Scholar 

  24. Jeong, J., Lee, S., Kim, J., Kwak, N.: Consistency-based semi-supervised learning for object detection (2019)

    Google Scholar 

  25. Kim, D., Lin, T.Y., Angelova, A., Kweon, I.S., Kuo, W.: Learning open-world object proposals without learning to classify. arXiv (2021)

    Google Scholar 

  26. Kirillov, A., Girshick, R., He, K., Dollár, P.: Panoptic feature pyramid networks. In: CVPR (2019)

    Google Scholar 

  27. Krasin, I., et al.: OpenImages: a public dataset for large-scale multi-label and multi-class image classification. Dataset (2016). http://github.com/openimages

  28. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NeurIPS (2012)

    Google Scholar 

  29. Kuznetsova, A., et al.: The open images dataset V4: unified image classification, object detection, and visual relationship detection at scale. IJCV 128, 1956–1981 (2020). https://doi.org/10.1007/s11263-020-01316-z

    Article  Google Scholar 

  30. Li, Y., Huang, D., Qin, D., Wang, L., Gong, B.: Improving object detection with Selective self-supervised self-training. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 589–607. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_35

    Chapter  Google Scholar 

  31. Li, Y., et al.: Fully convolutional networks for panoptic segmentation with point-based supervision. arXiv (2021)

    Google Scholar 

  32. Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: CVPR (2017)

    Google Scholar 

  33. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV (2017)

    Google Scholar 

  34. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  35. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: CVPR (2018)

    Google Scholar 

  36. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV (2021)

    Google Scholar 

  37. Morrison, D., et al.: Cartman: the low-cost cartesian manipulator that won the amazon robotics challenge. In: ICRA (2018)

    Google Scholar 

  38. Mottaghi, R., et al.: The role of context for object detection and semantic segmentation in the wild. In: CVPR (2014)

    Google Scholar 

  39. Qi, L., Jiang, L., Liu, S., Shen, X., Jia, J.: Amodal instance segmentation with KINS dataset. In: CVPR (2019)

    Google Scholar 

  40. Qi, L., et al.: Multi-scale aligned distillation for low-resolution detection. In: CVPR (2021)

    Google Scholar 

  41. Qi, L., et al.: Open-world entity segmentation. arXiv (2021)

    Google Scholar 

  42. Qi, L., Zhang, X., Chen, Y., Chen, Y., Sun, J., Jia, J.: PointINS: point-based instance segmentation. arXiv (2020)

    Google Scholar 

  43. Radosavovic, I., Dollár, P., Girshick, R., Gkioxari, G., He, K.: Data distillation: towards omni-supervised learning. In: CVPR (2018)

    Google Scholar 

  44. Ramanathan, V., Wang, R., Mahajan, D.: PreDet: large-scale weakly supervised pre-training for detection. In: ICCV (2021)

    Google Scholar 

  45. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NeurIPS (2015)

    Google Scholar 

  46. Sharma, A., Khan, N., Mubashar, M., Sundaramoorthi, G., Torr, P.: Class-agnostic segmentation loss and its application to salient object detection and segmentation. In: ICCV (2021)

    Google Scholar 

  47. Shu, G.: Human detection, tracking and segmentation in surveillance video (2014)

    Google Scholar 

  48. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  49. Sohn, K., Zhang, Z., Li, C.L., Zhang, H., Lee, C.Y., Pfister, T.: A simple semi-supervised learning framework for object detection. arXiv (2020)

    Google Scholar 

  50. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019)

    Google Scholar 

  51. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. arXiv (2016)

    Google Scholar 

  52. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  53. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)

    Google Scholar 

  54. Tang, P., Ramaiah, C., Wang, Y., Xu, R., Xiong, C.: Proposal learning for semi-supervised object detection. In: WACV (2021)

    Google Scholar 

  55. Tian, Z., Shen, C., Chen, H.: Conditional convolutions for instance segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 282–298. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_17

    Chapter  Google Scholar 

  56. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: ICCV (2019)

    Google Scholar 

  57. Wang, K., Yan, X., Zhang, D., Zhang, L., Lin, L.: Towards human-machine cooperation: self-supervised sample mining for object detection. In: CVPR (2018)

    Google Scholar 

  58. Wang, W., Feiszli, M., Wang, H., Tran, D.: Unidentified video objects: a benchmark for dense, open-world segmentation. arXiv (2021)

    Google Scholar 

  59. Wang, X., Zhang, R., Shen, C., Kong, T., Li, L.: Dense contrastive learning for self-supervised visual pre-training. In: CVPR (2021)

    Google Scholar 

  60. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2 (2019). http://github.com/facebookresearch/detectron2

  61. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 472–487. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_29

    Chapter  Google Scholar 

  62. Xie, E., et al.: DetCo: unsupervised contrastive learning for object detection. In: ICCV (2021)

    Google Scholar 

  63. Xie, E., et al.: PolarMask: single shot instance segmentation with polar representation. In: CVPR (2020)

    Google Scholar 

  64. Xu, M., et al.: End-to-end semi-supervised object detection with soft teacher. In: ICCV (2021)

    Google Scholar 

  65. Zhang, R., Tian, Z., Shen, C., You, M., Yan, Y.: Mask encoding for single shot instance segmentation. In: CVPR (2020)

    Google Scholar 

  66. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. TPAMI 40, 1452–1464 (2017)

    Article  Google Scholar 

  67. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points (2019)

    Google Scholar 

  68. Zoph, B., et al.: Rethinking pre-training and self-training. In: NeurIPS (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Guo .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 143 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qi, L. et al. (2022). CA-SSL: Class-Agnostic Semi-Supervised Learning for Detection and Segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13691. Springer, Cham. https://doi.org/10.1007/978-3-031-19821-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19821-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19820-5

  • Online ISBN: 978-3-031-19821-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics