Abstract
This paper addresses the very challenging problem of online task-free continual learning in which a sequence of new tasks is learned from non-stationary data using each sample only once for training and without knowledge of task boundaries. We propose in this paper an efficient semi-distributed associative memory algorithm called Dynamic Sparse Distributed Memory (DSDM) where learning and evaluating can be carried out at any point of time. DSDM evolves dynamically and continually modeling the distribution of any non-stationary data stream. DSDM relies on locally distributed, but only partially overlapping clusters of representations to effectively eliminate catastrophic forgetting, while at the same time, maintaining the generalization capacities of distributed networks. In addition, a local density-based pruning technique is used to control the network’s memory footprint. DSDM significantly outperforms state-of-the-art continual learning methods on different image classification baselines, even in a low data regime. Code is publicly available: https://github.com/Julien-pour/Dynamic-Sparse-Distributed-Memory.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the surprising behavior of distance metrics in high dimensional space. In: Van den Bussche, J., Vianu, V. (eds.) 8th International Conference on Database Theory, pp. 420–434. Springer (2001)
Aljundi, R., et al.: Online continual learning with maximal interfered retrieval. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Aljundi, R., Lin, M., Goujaud, B., Bengio, Y.: Gradient based sample selection for online continual learning. Adv. Neural Inf. Process. Syst. 32 (2019)
Ans, B., Rousset, S., French, R.M., Musca, S.: Self-refreshing memory in artificial neural networks: learning temporal sequences without catastrophic forgetting. Connection Sci. 16(2), 71–99 (2004)
Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers, p. 12 (2000)
Bricken, T., Pehlevan, C.: Attention approximates sparse distributed memory. Adv. Neural Inf. Process. Syst. 34, 15301–15315 (2021)
Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.: Emerging properties in self-supervised vision transformers. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9650–9660 (2021)
Carpenter, G., Grossberg, S.: ART 2: self-organization of stable category recognition codes for analog input patterns. Appl. Opt.26, 4919–4930 (1987)
Castro, F.M., Marín-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end incremental learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Proceedings of the European conference on computer vision (ECCV), pp. 233–248 (2018)
Chaudhry, A., Ranzato, M., Rohrbach, M., Elhoseiny, M.: Efficient lifelong learning with A-GEM. In: International Conference on Learning Representations (2018)
De Lange, M., Tuytelaars, T.: Continual prototype evolution: learning online from non-stationary data streams. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8250–8259 (2021)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)
Deng, L.: The MNIST database of handwritten digit images for machine learning research. IEEE Sign. Process. Mag. 29(6), 141–142 (2012)
Fahlman, S.E., Lebiere, C.: The cascade-correlation learning architecture. In: Touretzky, D.S. (ed.) Advances in Neural Information Processing Systems 2, [NIPS Conference, Denver, Colorado, USA, November 27–30, 1989], pp. 524–532. Morgan Kaufmann (1989). http://papers.nips.cc/paper/207-the-cascade-correlation-learning-architecture
French, R.M.: Dynamically constraining connectionist networks to produce distributed, orthogonal representations to reduce catastrophic interference. In: Proceedings of the 16th Annual Cognitive Science Society Conference, pp. 335–340 (1994)
French, R.M.: Pseudo-recurrent connectionist networks: an approach to the sensitivity-stability dilemma. Connection Sci. 9(4), 353–380 (1997)
French, R.M.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3(4), 128–135 (1999)
French, R.M., Chater, N.: Using noise to compute error surfaces in connectionist networks: a novel means of reducing catastrophic forgetting. Neural Comput. 14(7), 1755–1769 (2002)
Goodfellow, I.J., et al.: Generative Adversarial Networks. arXiv:1406.2661 (2014)
Goyal, P., et al.: Self-supervised Pretraining of Visual Features in the Wild. arXiv:2103.01988 (2021)
He, J., Zhu, F.: Online continual learning via candidates voting. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 3154–3163 (2022)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)
Hely, T.A., Willshaw, D.J., Hayes, G.M.: A new approach to Kanerva’s sparse distributed memory. IEEE Trans. Neural Netw. 8(3), 791–794 (1997). https://doi.org/10.1109/72.572115
Hinton, G., Vinyals, O., Dean, J.: Distilling the Knowledge in a Neural Network. arXiv:1503.02531 (2015)
Jezequel, L., Vu, N., Beaudet, J., Histace, A.: Efficient anomaly detection using self-supervised multi-cue tasks. CoRR arXiv:abs/2111.12379 (2021)
Kanerva, P.: A cerebellar-model associative memory as a generalized random-access memory. In: Thirty-Fourth IEEE Computer Society International Conference: Intellectual Leverage, pp. 770–778 (1989)
Kanerva, P.: Sparse distributed memory and related models. Tech. Rep. NASA-CR-190553, keeler (1992)
Keeler, J.: Capacity for patterns and sequences in Kanerva’ s SDM as compared to other associative memory models. In: Neural Information Processing Systems. American Institute of Physics (1988)
Kemker, R., Kanan, C.: FearNet: Brain-inspired model for incremental learning. In: International Conference on Learning Representations (2018)
Kingma, D.P., Welling, M.: Auto-Encoding Variational Bayes. arXiv:1312.6114 (May 2014)
Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., Hassabis, D., Clopath, C., Kumaran, D., Hadsell, R.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114(13), 3521–3526 (2017)
Krizhevsky, A.: Learning Multiple Layers of Features from Tiny Images (2009)
Kruschke, J.K.: Human category learning: implications for backpropagation models. Connection Sci. 5(1), 3–36 (1993)
Lee, S., Ha, J., Zhang, D., Kim, G.: A neural dirichlet process mixture model for task-free continual learning. In: 8th ICLR 2020. OpenReview.net (2020). https://openreview.net/forum?id=SJxSOJStPr
Lewandowsky, S.: Gradual unlearning and catastrophic interference: a comparison of distributed architectures. In: Relating theory and data: Essays on human memory in honor of Bennet B. Murdock, pp. 445–476. Lawrence Erlbaum Associates Inc, Hillsdale, NJ, US (1991)
Li, Z., Hoiem, D.: Learning without forgetting. In: 14th European Conference on Computer Vision, ECCV 2016. Computer Vision - 14th European Conference, ECCV 2016, Proceedings, pp. 614–629 (2016)
Lomonaco, V., Maltoni, D.: CORe50: a new dataset and benchmark for continuous object recognition. In: CoRL, pp. 17–26 (2017)
Lopez-Paz, D., Ranzato, M.A.: Gradient episodic memory for continual learning. Adv. Neural Inf. Process. Syst. 30(2017)
Mallya, A., Lazebnik, S.: PackNet: adding multiple tasks to a single network by iterative pruning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7765–7773 (2018)
Marsland, S., Shapiro, J., Nehmzow, U.: A self-organising network that grows when required. Neural Netw. 15(8-9), 1041–1058 (2002)
McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. In: Bower, G.H. (ed.) Psychology of Learning and Motivation, vol. 24, pp. 109–165 (1989)
Orhan, A.E., Gupta, V.V., Lake, B.M.: Self-supervised learning through the eyes of a child. Adv. Neural Inf. Process. Syst. (2020)
Ostapenko, O., Puscas, M., Klein, T., Jähnichen, P., Nabi, M.: Learning to Remember: A Synaptic Plasticity Driven Framework for Continual Learning. arXiv:1904.03137 [cs] (2019)
Ostapenko, O., Puscas, M.M., Klein, T., Jähnichen, P., Nabi, M.: Learning to remember: a synaptic plasticity driven framework for continual learning. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16–20, 2019, pp. 11321–11329. Computer Vision Foundation/IEEE (2019). https://doi.org/10.1109/CVPR.2019.01158
Prabhu, A., Torr, P.H.S., Dokania, P.K.: GDumb: a Simple approach that questions our progress in continual learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer Vision - ECCV 2020, vol. 12347, pp. 524–540 (2020)
Ramsauer, H., et al.: Hopfield Networks is All You Need. arXiv:2008.02217 (2021)
Rao, D., Visin, F., Rusu, A.A., Teh, Y.W., Pascanu, R., Hadsell, R.: Continual unsupervised representation learning. CoRR arXiv:abs/1910.14481 (2019)
Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2001–2010 (2017)
R.M, F.: Semi-distributed representations and catastrophic forgetting in connectionist networks. Connection Sci. 4(3-4), 365–377 (1992)
Robins, A.: Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Sci. 7(2), 123–146 (1995)
Roy, D., Panda, P., Roy, K.: Tree-CNN: a hierarchical deep convolutional neural network for incremental learning. Neural Netw. (2019)
Schwarz, Jet al.: Progress & compress: a scalable framework for continual learning. In: Proceedings of the 35th International Conference on Machine Learning, pp. 4528–4537 (2018)
Serrà, J., Surís, D., Miron, M., Karatzoglou, A.: Overcoming catastrophic forgetting with hard attention to the task. Int. Conf. Mach. Learn. 4548–4557 (2018)
Shanahan, M., Kaplanis, C., Mitrović, J.: Encoders and Ensembles for Task-Free Continual Learning. arXiv:2105.13327 (2021)
Shim, D., Mai, Z., Jeong, J., Sanner, S., Kim, H., Jang, J.: Online class-incremental continual learning with adversarial shapley value. In: Proceedings of the AAAI Conference on Artificial Intelligence 35(11), 9630–9638 (2021)
van de Ven, G.M., Siegelmann, H.T., Tolias, A.S.: Brain-inspired replay for continual learning with artificial neural networks. Nat. Commun. 11(1), 1–14 (2020)
van de Ven, G.M., Tolias, A.S.: Three scenarios for continual learning. arXiv:1904.07734 (2019)
Wang, Y.X., Ramanan, D., Hebert, M.: Growing a brain: fine-tuning by increasing model capacity. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2471–2480 (2019)
Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., Perona, P.: Caltech-UCSD birds 200 (2010)
Wu, C., Herranz, L., Liu, X., wang, y., van de Weijer, J., Raducanu, B.: Memory replay GANs: learning to generate new categories without forgetting. Adv. Neural Inf. Process. Syst. 31 (2018)
Xiang, Y., Fu, Y., Ji, P., Huang, H.: Incremental learning using conditional adversarial networks. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6619–6628 (2019)
Yoon, J., Yang, E., Lee, J., Hwang, S.J.: Lifelong learning with dynamically expandable networks. In: International Conference on Learning Representations (2018)
Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence. In: Proceedings of the 34th International Conference on Machine Learning, pp. 3987–3995 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pourcel, J., Vu, NS., French, R.M. (2022). Online Task-free Continual Learning with Dynamic Sparse Distributed Memory. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13685. Springer, Cham. https://doi.org/10.1007/978-3-031-19806-9_42
Download citation
DOI: https://doi.org/10.1007/978-3-031-19806-9_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19805-2
Online ISBN: 978-3-031-19806-9
eBook Packages: Computer ScienceComputer Science (R0)