Abstract
Face recognition has made tremendous progress in recent years due to the advances in loss functions and the explosive growth in training sets size. A properly designed loss is seen as key to extract discriminative features for classification. Several margin-based losses have been proposed as alternatives of softmax loss in face recognition. However, two issues remain to consider: 1) They overlook the importance of hard sample mining for discriminative learning. 2) Label noise ubiquitously exists in large-scale datasets, which can seriously damage the model’s performance. In this paper, starting from the perspective of decision boundary, we propose a novel mining framework that focuses on the relationship between a sample’s ground truth class center and its nearest negative class center. Specifically, a closed-set noise label self-correction module is put forward, making this framework work well on datasets containing a lot of label noise. The proposed method consistently outperforms SOTA methods in various face recognition benchmarks. Training code has been released at https://gitee.com/swjtugx/classmate/tree/master/OurGroup/BoundaryFace.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cao, D., Zhu, X., Huang, X., Guo, J., Lei, Z.: Domain balancing: face recognition on long-tailed domains. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5671–5679 (2020)
Chen, B.: Angular visual hardness. In: International Conference on Machine Learning, pp. 1637–1648. PMLR (2020)
Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)
Deng, W., Jiani, H., Zhang, N., Chen, B., Guo, J.: Fine-grained face verification: FGLFW database, baselines, and human-DCMN partnership. Pattern Recogn. 66, 63–73 (2017)
Guo, J., Zhu, X., Zhao, C., Cao, D., Lei, Z., Li, S.Z.: Learning meta face recognition in unseen domains. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6163–6172 (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. In: Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition (2008)
Huang, Y., et al.: Improving face recognition from hard samples via distribution distillation loss. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 138–154. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_9
Huang, Y., et al.: CurricularFace: adaptive curriculum learning loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5901–5910 (2020)
Kemelmacher-Shlizerman, I., Seitz, S.M., Miller, D., Brossard, E.: The MegaFace benchmark: 1 million faces for recognition at scale. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4873–4882 (2016)
Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: SphereFace: deep hypersphere embedding for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 212–220 (2017)
Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin softmax loss for convolutional neural networks. In: ICML, vol. 2, p. 7 (2016)
Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., Zafeiriou, S.: AgeDB: the first manually collected, in-the-wild age database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 51–59 (2017)
Paszke, A., et al.: Automatic differentiation in PyTorch (2017)
Ranjan, R., Castillo, C.D., Chellappa, R.: L2-constrained softmax loss for discriminative face verification. arXiv preprint arXiv:1703.09507 (2017)
Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)
Sengupta, S., Chen, J.-C., Castillo, C., Patel, V.M., Chellappa, R., Jacobs, D.W.: Frontal to profile face verification in the wild. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–9. IEEE (2016)
Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors with online hard example mining. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 761–769 (2016)
Sohn, K.: Improved deep metric learning with multi-class n-pair loss objective. In: Advances in Neural Information Processing Systems, pp. 1857–1865 (2016)
Sun, Y.: Deep learning face representation by joint identification-verification. The Chinese University of Hong Kong, Hong Kong (2015)
Tai, Y., et al.: Towards highly accurate and stable face alignment for high-resolution videos. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8893–8900 (2019)
Wang, F., et al.: The devil of face recognition is in the noise. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 780–795. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_47
Wang, F., Cheng, J., Liu, W., Liu, H.: Additive margin softmax for face verification. IEEE Signal Process. Lett. 25(7), 926–930 (2018)
Wang, F., Xiang, X., Cheng, J., Yuille, A.L.: NormFace: L2 hypersphere embedding for face verification. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 1041–1049 (2017)
Wang, H., et al.: CosFace: large margin cosine loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5265–5274 (2018)
Wang, M., Deng, W., Hu, J., Peng, J., Tao, X., Huang, Y.: Racial faces in-the-wild: reducing racial bias by deep unsupervised domain adaptation. arXiv preprint arXiv:1812.00194 (2018)
Wang, X., Zhang, S., Wang, S., Tianyu, F., Shi, H., Mei, T.: MIS-classified vector guided softmax loss for face recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12241–12248 (2020)
Wen, Y., Zhang, K., Li, Z., Qiao, Yu.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31
Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch. arXiv preprint arXiv:1411.7923 (2014)
Yuan, Y., Yang, K., Zhang, C.: Feature incay for representation regularization. arXiv preprint arXiv:1705.10284 (2017)
Zhang, K., Zhang, Z., Li, Z., Qiao, Yu.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)
Zhang, X., Zhao, R., Qiao, Y., Wang, X., Li, H.: AdaCos: adaptively scaling cosine logits for effectively learning deep face representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10823–10832 (2019)
Zheng, T., Deng, W.: Cross-pose LFW: a database for studying cross-pose face recognition in unconstrained environments. Beijing University of Posts and Telecommunications, Technical report, 5:7 (2018)
Zheng, T., Deng, W., Hu, J.: Cross-age LFW: a database for studying cross-age face recognition in unconstrained environments. arXiv preprint arXiv:1708.08197 (2017)
Acknowledgement
This work was supported in part by the National Natural Science Foundation of China (61876158), Fundamental Research Funds for the Central Universities (2682021ZTPY030).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, S., Gong, X. (2022). BoundaryFace: A Mining Framework with Noise Label Self-correction for Face Recognition. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13673. Springer, Cham. https://doi.org/10.1007/978-3-031-19778-9_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-19778-9_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19777-2
Online ISBN: 978-3-031-19778-9
eBook Packages: Computer ScienceComputer Science (R0)