Latent Space Smoothing for Individually Fair Representations | SpringerLink
Skip to main content

Latent Space Smoothing for Individually Fair Representations

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Fair representation learning transforms user data into a representation that ensures fairness and utility regardless of the downstream application. However, learning individually fair representations, i.e., guaranteeing that similar individuals are treated similarly, remains challenging in high-dimensional settings such as computer vision. In this work, we introduce LASSI, the first representation learning method for certifying individual fairness of high-dimensional data. Our key insight is to leverage recent advances in generative modeling to capture the set of similar individuals in the generative latent space. This enables us to learn individually fair representations that map similar individuals close together by using adversarial training to minimize the distance between their representations. Finally, we employ randomized smoothing to provably map similar individuals close together, in turn ensuring that local robustness verification of the downstream application results in end-to-end fairness certification. Our experimental evaluation on challenging real-world image data demonstrates that our method increases certified individual fairness by up to 90% without significantly affecting task utility.

A. Ruoss—Work partially done while the author was at ETH Zurich.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albarghouthi, A., D’Antoni, L., Drews, S., Nori, A.V.: Fairsquare: probabilistic verification of program fairness. In: Proceedings of ACM Programming Language (2017)

    Google Scholar 

  2. Balakrishnan, G., Xiong, Y., Xia, W., Perona, P.: Towards causal benchmarking of biasin face analysis algorithms. In: Ratha, N.K., Patel, V.M., Chellappa, R. (eds.) Deep Learning-Based Face Analytics. ACVPR, pp. 327–359. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-74697-1_15

    Chapter  Google Scholar 

  3. Balunovic, M., Ruoss, A., Vechev, M.: Fair normalizing flows. In: International Conference on Learning Representations (2022). https://openreview.net/forum?id=BrFIKuxrZE

  4. Bastani, O., Zhang, X., Solar-Lezama, A.: Probabilistic verification of fairness properties via concentration. In: Proceedings of ACM Programming Language (2019)

    Google Scholar 

  5. Bolukbasi, T., Chang, K., Zou, J.Y., Saligrama, V., Kalai, A.T.: Man is to computer programmer as woman is to homemaker? debiasing word embeddings. Adv. Neural Inf. Process. Syst. 29 (2016)

    Google Scholar 

  6. Brennan, T., Dieterich, W., Ehret, B.: Evaluating the predictive validity of the compas risk and needs assessment system. Crim. Just. Behav. 36, 21–40 (2009)

    Article  Google Scholar 

  7. Buolamwini, J., Gebru, T.: Gender shades: intersectional accuracy disparities in commercial gender classification. In: Conference on Fairness, Accountability and Transparency (2018)

    Google Scholar 

  8. Burgess, C., Kim, H.: 3d shapes dataset (2018). https://github.com/deepmind/3dshapes-dataset/

  9. Choi, Y., Dang, M., den Broeck, G.V.: Group fairness by probabilistic modeling with latent fair decisions. In: Thirty-Fifth AAAI Conference on Artificial Intelligence (2021)

    Google Scholar 

  10. Cohen, J.M., Rosenfeld, E., Kolter, J.Z.: Certified adversarial robustness via randomized smoothing. In: Proceedings of the 36th International Conference on Machine Learning (2019)

    Google Scholar 

  11. Creager, E., Met al.: Flexibly fair representation learning by disentanglement. In: Proceedings of the 36th International Conference on Machine Learning (2019)

    Google Scholar 

  12. Dash, S., Sharma, A.: Evaluating and mitigating bias in image classifiers: a causal perspective using counterfactuals. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 915–924 (2022)

    Google Scholar 

  13. Denton, E., Hutchinson, B., Mitchell, M., Gebru, T.: Detecting bias with generative counterfactual face attribute augmentation. CoRR (2019)

    Google Scholar 

  14. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.S.: Fairness through awareness. In: Innovations in Theoretical Computer Science (2012)

    Google Scholar 

  15. Edwards, H., Storkey, A.J.: Censoring representations with an adversary. In: 4th International Conference on Learning Representations (2016)

    Google Scholar 

  16. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In: Automated Technology for Verification and Analysis - 15th International Symposium (2017)

    Google Scholar 

  17. Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., Madry, A.: Exploring the landscape of spatial robustness. In: Proceedings of the 36th International Conference on Machine Learning (2019)

    Google Scholar 

  18. EU: Ethics guidelines for trustworthy AI (2019)

    Google Scholar 

  19. EU: Proposal for a regulation of the European parliament and of the council laying down harmonised rules on artificial intelligence (artificial intelligence act) and amending certain union legislative acts (2021)

    Google Scholar 

  20. Feng, R., Yang, Y., Lyu, Y., Tan, C., Sun, Y., Wang, C.: Learning fair representations via an adversarial framework. CoRR (2019)

    Google Scholar 

  21. Fleisher, W.: What’s fair about individual fairness? In: AAAI/ACM Conference on AI, Ethics, and Society, Virtual Event (2021)

    Google Scholar 

  22. FTC: Using artificial intelligence and algorithms (2020)

    Google Scholar 

  23. FTC: Aiming for truth, fairness, and equity in your company’s use of AI (2021)

    Google Scholar 

  24. Gitiaux, X., Rangwala, H.: Learning smooth and fair representations. In: The 24th International Conference on Artificial Intelligence and Statistics (2021)

    Google Scholar 

  25. Goodfellow, I.J., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014)

    Google Scholar 

  26. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: 3rd International Conference on Learning Representations (2015)

    Google Scholar 

  27. Gowal, S., et al.: Achieving robustness in the wild via adversarial mixing with disentangled representations. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  28. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning. Adv. Neural Inf. Process. Syst. 29 (2016)

    Google Scholar 

  29. Hendricks, L.A., Burns, K., Saenko, K., Darrell, T., Rohrbach, A.: Women also snowboard: overcoming bias in captioning models. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 793–811. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_47

    Chapter  Google Scholar 

  30. Higgins, I., et al.: beta-vae: learning basic visual concepts with a constrained variational framework. In: 5th International Conference on Learning Representations (2017)

    Google Scholar 

  31. Ilvento, C.: Metric learning for individual fairness. In: 1st Symposium on Foundations of Responsible Computing (2020)

    Google Scholar 

  32. John, P.G., Vijaykeerthy, D., Saha, D.: Verifying individual fairness in machine learning models. In: Proceedings of the Thirty-Sixth Conference on Uncertainty in Artificial Intelligence (2020)

    Google Scholar 

  33. Joo, J., Kärkkäinen, K.: Gender slopes: counterfactual fairness for computer vision models by attribute manipulation. In: Proceedings of the 2nd International Workshop on Fairness, Accountability, Transparency and Ethics in Multimedia, FATE/MM ’20, pp. 1–5. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3422841.3423533

  34. Kärkkäinen, K., Joo, J.: Fairface: face attribute dataset for balanced race, gender, and age for bias measurement and mitigation. In: IEEE Winter Conference on Applications of Computer Vision (2021)

    Google Scholar 

  35. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for improved quality, stability, and variation. In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018, Conference Track Proceedings. OpenReview.net (2018). https://openreview.net/forum?id=Hk99zCeAb

  36. Kearns, M.J., Neel, S., Roth, A., Wu, Z.S.: Preventing fairness gerrymandering: auditing and learning for subgroup fairness. In: Proceedings of the 35th International Conference on Machine Learning (2018)

    Google Scholar 

  37. Kehrenberg, T., Bartlett, M., Thomas, O., Quadrianto, N.: Null-sampling for interpretable and fair representations. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 565–580. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_34

    Chapter  Google Scholar 

  38. Khandani, A.E., Kim, A.J., Lo, A.W.: Consumer credit-risk models via machine-learning algorithms. J. Bank. Finan. 34, 2767–2787 (2010)

    Article  Google Scholar 

  39. Kim, B., et al.: Interpretability beyond feature attribution: quantitative testing with concept activation vectors (TCAV). In: Proceedings of the 35th International Conference on Machine Learning (2018)

    Google Scholar 

  40. Kim, H., et al.: Counterfactual fairness with disentangled causal effect variational autoencoder. In: Thirty-Fifth AAAI Conference on Artificial Intelligence (2021)

    Google Scholar 

  41. Kingma, D.P., Dhariwal, P.: Glow: generative flow with invertible 1\(\times \)1 convolutions. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  42. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: 2nd International Conference on Learning Representations (2014)

    Google Scholar 

  43. Klare, B., Burge, M.J., Klontz, J.C., Bruegge, R.W.V., Jain, A.K.: Face recognition performance: role of demographic information. IEEE Trans. Inf. Forensics Secur. (2012)

    Google Scholar 

  44. Kumar, A., Goldstein, T.: Center smoothing: certified robustness for networks with structured outputs. Adv. Neural Inf. Process. Syst. 34 (2021)

    Google Scholar 

  45. Lahoti, P., Gummadi, K.P., Weikum, G.: ifair: learning individually fair data representations for algorithmic decision making. In: 35th IEEE International Conference on Data Engineering (2019)

    Google Scholar 

  46. Lahoti, P., Gummadi, K.P., Weikum, G.: Operationalizing individual fairness with pairwise fair representations. In: Proceedings of VLDB Endowment (2019)

    Google Scholar 

  47. Lang, O., et al.: Explaining in style: training a gan to explain a classifier in stylespace. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 693–702 (2021)

    Google Scholar 

  48. Li, Z., Xu, C.: Discover the unknown biased attribute of an image classifier. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14970–14979 (2021)

    Google Scholar 

  49. Liang, P.P., Wu, C., Morency, L., Salakhutdinov, R.: Towards understanding and mitigating social biases in language models. In: Proceedings of the 38th International Conference on Machine Learning (2021)

    Google Scholar 

  50. Liao, J., Huang, C., Kairouz, P., Sankar, L.: Learning generative adversarial representations (GAP) under fairness and censoring constraints. CoRR (2019)

    Google Scholar 

  51. Lin, X., Zhen, H., Li, Z., Zhang, Q., Kwong, S.: Pareto multi-task learning. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  52. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  53. Locatello, F., Abbati, G., Rainforth, T., Bauer, S., Schölkopf, B., Bachem, O.: On the fairness of disentangled representations. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  54. Louizos, C., Swersky, K., Li, Y., Welling, M., Zemel, R.S.: The variational fair autoencoder. In: 4th International Conference on Learning Representations (2016)

    Google Scholar 

  55. Madras, D., Creager, E., Pitassi, T., Zemel, R.S.: Learning adversarially fair and transferable representations. In: Proceedings of the 35th International Conference on Machine Learning (2018)

    Google Scholar 

  56. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: 6th International Conference on Learning Representations (2018)

    Google Scholar 

  57. Maity, S., Xue, S., Yurochkin, M., Sun, Y.: Statistical inference for individual fairness. In: 9th International Conference on Learning Representations (2021)

    Google Scholar 

  58. Martínez, N., Bertrán, M., Sapiro, G.: Minimax pareto fairness: a multi objective perspective. In: Proceedings of the 37th International Conference on Machine Learning (2020)

    Google Scholar 

  59. McDuff, D.J., Cheng, R., Kapoor, A.: Identifying bias in AI using simulation. CoRR (2018)

    Google Scholar 

  60. McNamara, D., Ong, C.S., Williamson, R.C.: Costs and benefits of fair representation learning. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (2019)

    Google Scholar 

  61. Mirman, M., Hägele, A., Bielik, P., Gehr, T., Vechev, M.T.: Robustness certification with generative models. In: 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation (2021)

    Google Scholar 

  62. Mukherjee, D., Yurochkin, M., Banerjee, M., Sun, Y.: Two simple ways to learn individual fairness metrics from data. In: Proceedings of the 37th International Conference on Machine Learning (2020)

    Google Scholar 

  63. Oneto, L., Donini, M., Pontil, M., Maurer, A.: Learning fair and transferable representations with theoretical guarantees. In: 7th IEEE International Conference on Data Science and Advanced Analytics (2020)

    Google Scholar 

  64. Park, J.H., Shin, J., Fung, P.: Reducing gender bias in abusive language detection. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (2018)

    Google Scholar 

  65. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  66. Raji, I.D., Buolamwini, J.: Actionable auditing: investigating the impact of publicly naming biased performance results of commercial AI products. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (2019)

    Google Scholar 

  67. Ramaswamy, V.V., Kim, S.S.Y., Russakovsky, O.: Fair attribute classification through latent space de-biasing. In: IEEE Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  68. Ruoss, A., Balunovic, M., Fischer, M., Vechev, M.T.: Learning certified individually fair representations. Adv. Neural Inf. Process. Syst. 33 (2020)

    Google Scholar 

  69. Sarhan, M.H., Navab, N., Eslami, A., Albarqouni, S.: Fairness by learning orthogonal disentangled representations. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 746–761. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_44

    Chapter  Google Scholar 

  70. Sattigeri, P., Hoffman, S.C., Chenthamarakshan, V., Varshney, K.R.: Fairness GAN: generating datasets with fairness properties using a generative adversarial network. IBM J. Res. Dev. (2019)

    Google Scholar 

  71. Segal, S., Adi, Y., Pinkas, B., Baum, C., Ganesh, C., Keshet, J.: Fairness in the eyes of the data: certifying machine-learning models. In: AAAI/ACM Conference on AI, Ethics, and Society (2021)

    Google Scholar 

  72. Seonghyeon, K.: Glow pytorch (commit: 97081ff1) (2020). https://github.com/rosinality/glow-pytorch

  73. Song, J., Kalluri, P., Grover, A., Zhao, S., Ermon, S.: Learning controllable fair representations. In: The 22nd International Conference on Artificial Intelligence and Statistics (2019)

    Google Scholar 

  74. Sun, X., Wu, P., Hoi, S.C.H.: Face detection using deep learning: an improved faster RCNN approach. Neurocomputing 299, 42–50 (2018)

    Article  Google Scholar 

  75. Tatman, R.: Gender and dialect bias in youtube’s automatic captions. In: Proceedings of the First ACL Workshop on Ethics in Natural Language Processing (2017)

    Google Scholar 

  76. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with mixed integer programming. In: 7th International Conference on Learning Representations (2019)

    Google Scholar 

  77. UN: The right to privacy in the digital age (2021)

    Google Scholar 

  78. Urban, C., Christakis, M., Wüstholz, V., Zhang, F.: Perfectly parallel fairness certification of neural networks. In: Proceedings of ACM Programming Language (2020)

    Google Scholar 

  79. Wang, H., Grgic-Hlaca, N., Lahoti, P., Gummadi, K.P., Weller, A.: An empirical study on learning fairness metrics for COMPAS data with human supervision. CoRR (2019)

    Google Scholar 

  80. Wang, T., Zhao, J., Yatskar, M., Chang, K., Ordonez, V.: Balanced datasets are not enough: estimating and mitigating gender bias in deep image representations. In: IEEE/CVF International Conference on Computer Vision (2019)

    Google Scholar 

  81. Wang, Z., et al.: Towards fairness in visual recognition: effective strategies for bias mitigation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  82. Wei, S., Niethammer, M.: The fairness-accuracy pareto front. Stat. Anal. Data Min. 15(3), 287–302 (2022). https://doi.org/10.1002/sam.11560

  83. Wilson, B., Hoffman, J., Morgenstern, J.: Predictive inequity in object detection. CoRR (2019)

    Google Scholar 

  84. Wong, E., Kolter, J.Z.: Learning perturbation sets for robust machine learning. In: 9th International Conference on Learning Representations (2021)

    Google Scholar 

  85. Yeom, S., Fredrikson, M.: Individual fairness revisited: transferring techniques from adversarial robustness. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (2020)

    Google Scholar 

  86. Yurochkin, M., Bower, A., Sun, Y.: Training individually fair ML models with sensitive subspace robustness. In: 8th International Conference on Learning Representations (2020)

    Google Scholar 

  87. Yurochkin, M., Sun, Y.: Sensei: sensitive set invariance for enforcing individual fairness. In: 9th International Conference on Learning Representations (2021)

    Google Scholar 

  88. Zemel, R.S., Wu, Y., Swersky, K., Pitassi, T., Dwork, C.: Learning fair representations. In: Proceedings of the 30th International Conference on Machine Learning (2013)

    Google Scholar 

  89. Zhao, H., Coston, A., Adel, T., Gordon, G.J.: Conditional learning of fair representations. In: 8th International Conference on Learning Representations (2020)

    Google Scholar 

  90. Zhao, J., Wang, T., Yatskar, M., Ordonez, V., Chang, K.: Men also like shopping: reducing gender bias amplification using corpus-level constraints. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (2017)

    Google Scholar 

Download references

Acknowledgments

We thank Seyedmorteza Sadat for his help with preliminary investigations and the anonymous reviewers for their insightful feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Momchil Peychev .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2140 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peychev, M., Ruoss, A., Balunović, M., Baader, M., Vechev, M. (2022). Latent Space Smoothing for Individually Fair Representations. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13673. Springer, Cham. https://doi.org/10.1007/978-3-031-19778-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19778-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19777-2

  • Online ISBN: 978-3-031-19778-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics