A Skeleton-Based Deep Learning Approach for Recognizing Violent Actions in Surveillance Scenarios | SpringerLink
Skip to main content

A Skeleton-Based Deep Learning Approach for Recognizing Violent Actions in Surveillance Scenarios

  • Conference paper
  • First Online:
HCI International 2022 – Late Breaking Posters (HCII 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1655))

Included in the following conference series:

  • 1618 Accesses

Abstract

A novel skeleton-based approach that recognizes specific violent actions (VAs) such as kicking and punching, which are highly relevant in surveillance scenarios, is presented. The method uses a depth sensor for more efficient and accurate depth data acquisition and classifies an action by utilizing the forecasts of an ensemble of Long Short-Term Memory (LSTM) networks, each trained to predict a specific VA. The proposed method offers the advantages of requiring a smaller dataset for training (since only data for a few specific VAs is required and data for non-VAs is not needed) and a lower risk of misclassification (since a separate LSTM network is trained for each VA). The utilization of a compact skeletal representation and a distributed architecture allows the system to operate efficiently bolstering its potential to be practically used in real-world scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ramzan, M., et al.: A review on state-of-the-art violence detection techniques. IEEE Access 7, 107560–107575 (2019)

    Article  Google Scholar 

  2. Omarov, B., Narynov, S., Zhumanov, Z., Gumar, A., Khassanova, M.: State-of-the-art violence detection techniques in video surveillance security systems: a systematic review. PeerJ Comput. Sci. 8, e920 (2022)

    Article  Google Scholar 

  3. Naik, A.J., Gopalakrishna, M.T.: Deep-violence: individual person violent activity detection in video. Multimed. Tools Appl. 80(12), 18365–18380 (2021). https://doi.org/10.1007/s11042-021-10682-w

    Article  Google Scholar 

  4. Su, Y., Lin, G., Zhu, J., Wu, Q.: Human interaction learning on 3D skeleton point clouds for video violence recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 74–90. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_5

    Chapter  Google Scholar 

  5. Srivastava, A., Badal, T., Garg, A., Vidyarthi, A., Singh, R.: Recognizing human violent action using drone surveillance within real-time proximity. J. Real-Time Image Proc. 18(5), 1851–1863 (2021). https://doi.org/10.1007/s11554-021-01171-2

    Article  Google Scholar 

  6. Liu, H., Yao, M., Wang, L.: Svrat: a skeleton-based intelligent monitoring system for violence recognition and abuser tracking. In: 2021 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2021)

    Google Scholar 

  7. Xing, Y., Dai, Y., Hirota, K., Jia, Z.: A skeleton-based method for recognizing the campus violence. In: The 9th International Symposium on Computational Intelligence and Industrial Applications (ISCIIA 2020), Beijing, China (2020)

    Google Scholar 

  8. Chikhaoui, B., Ye, B., Mihailidis, A.: Feature-level combination of skeleton joints and body parts for accurate aggressive and agitated behavior recognition. J. Ambient. Intell. Humaniz. Comput. 8(6), 957–976 (2016). https://doi.org/10.1007/s12652-016-0415-y

    Article  Google Scholar 

  9. Nirjon, S., et al.: Kintense: a robust, accurate, real-time and evolving system for detecting aggressive actions from streaming 3D skeleton data. In: 2014 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 2–10 (2014)

    Google Scholar 

  10. Nova, D., Ferreira, A., Cortez, P.: A machine learning approach to detect violent behaviour from video. In: Cortez, P., Magalhães, L., Branco, P., Portela, C.F., Adão, T. (eds.) INTETAIN 2018. LNICSSITE, vol. 273, pp. 85–94. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16447-8_9

    Chapter  Google Scholar 

  11. Li, D.: Human skeleton detection and extraction in dance video based on PSO-enabled LSTM neural network. Comput. Intell. Neurosci. 2021, 2545151 (2021)

    Google Scholar 

  12. Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., Sheikh, Y.: OpenPose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43, 172–186 (2021)

    Article  Google Scholar 

  13. Kinect for Windows. https://developer.microsoft.com/en-us/windows/kinect/. Accessed 22 May 2022

  14. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850 (2013)

  15. Graves, A., Jaitly, N.: Towards end-to-end speech recognition with recurrent neural networks. In: Proceedings of the 31st International Conference on Machine Learning, Beijing, China, vol. 32, pp. II–1764–II–1772. JMLR.org (2014)

    Google Scholar 

  16. Krishna, K., Jain, D., Mehta, S.V., Choudhary, S.: An LSTM based system for prediction of human activities with durations. Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. 1, 1–31 (2018). Article: 147

    Google Scholar 

  17. Tax, N.: Human activity prediction in smart home environments with LSTM neural networks. In: 14th International Conference on Intelligent Environments (IE), pp. 40–47 (2018)

    Google Scholar 

  18. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)

    Google Scholar 

  19. Toshev, A., Szegedy, C.: DeepPose: human pose estimation via deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1653–1660 (2014)

    Google Scholar 

  20. Fang, H.S., Xie, S., Tai, Y.W., Lu, C.: RMPE: regional multi-person pose estimation. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2353–2362 (2017)

    Google Scholar 

  21. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Two-stream adaptive graph convolutional networks for skeleton-based action recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12018–12027 (2019)

    Google Scholar 

  22. Ma, Q., Zou, Q., Huang, Y., Wang, N.: Dynamic pedestrian trajectory forecasting with LSTM-based Delaunay triangulation. Appl. Intell. 52, 3018–3028 (2022). https://doi.org/10.1007/s10489-021-02562-5

    Article  Google Scholar 

  23. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 961–971 (2016)

    Google Scholar 

  24. Tharali, S.R., Wakchaure, G.S., Shirsat, D.S., Singhaniya, N.G.: Violence detection using embedded GPU. In: ITM Web of Conferences, vol. 32, p. 03014. EDP Sciences (2020)

    Google Scholar 

  25. Shahroudy, A., Liu, J., Ng, T.-T., Wang, G.: NTU RGB+D: a large scale dataset for 3D human activity analysis. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1010–1019 (2016)

    Google Scholar 

  26. Yun, K., Honorio, J., Chattopadhyay, D., Berg, T.L., Samaras, D.: Two-person interaction detection using body-pose features and multiple instance learning. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 28–35 (2012)

    Google Scholar 

  27. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  28. Jafri, R., Arabnia, H.R.: A survey of face recognition techniques. J. Inf. Process. Syst. 5, 41–68 (2009)

    Article  Google Scholar 

  29. Jafri, R., Arabnia, H.R.: Fusion of face and gait for automatic human recognition. In: Fifth International Conference on Information Technology: New Generations (ITNG 2008), pp. 167–173 (2008)

    Google Scholar 

  30. Jafri, R., Arabnia, H.R., Simpson, K.J.: An integrated face-gait system for automatic recognition of humans. In: International Conference on Security and Management (SAM 2008), Las Vegas, Nevada, USA, pp. 571–581 (2008)

    Google Scholar 

  31. Jafri, R., Arabnia, H.R.: PCA-based methods for face recognition. In: Proceedings of the 2007 International Conference on Security and Management (SAM 2007), Las Vegas, USA, pp. 534–541 (2007)

    Google Scholar 

  32. Jafri, R., Arabnia, H.R.: A survey of component-based face recognition approaches. In: International Conference on Artificial Intelligence (ICAI 2007), Las Vegas, USA, pp. 103–113 (2007)

    Google Scholar 

  33. Jafri, R., Arabnia, H.R.: A multi-resolution hierarchical approach for face recognition. In: International Conference on Image Information and Knowledge Engineering (IKE 2007), Las Vegas, Nevada, USA, pp. 231–239 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabia Jafri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jafri, R., Louzada Campos, R., Arabnia, H.R. (2022). A Skeleton-Based Deep Learning Approach for Recognizing Violent Actions in Surveillance Scenarios. In: Stephanidis, C., Antona, M., Ntoa, S., Salvendy, G. (eds) HCI International 2022 – Late Breaking Posters. HCII 2022. Communications in Computer and Information Science, vol 1655. Springer, Cham. https://doi.org/10.1007/978-3-031-19682-9_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19682-9_79

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19681-2

  • Online ISBN: 978-3-031-19682-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics