Abstract
Along with the popularity of the Android operating system, \(98\%\) of mobile malware targets Android devices [1], which has become one of the primary source for privacy leakage. Detecting malicious network transmissions in these apps is challenging because the malware hides its behavior and masquerades as benign software to evade detection. In this work, we propose TraceDroid, a framework that can automatically trace abnormally sensitive network transmissions to detect the malware. By leveraging the static and dynamic analysis, the sensitive informations can be firstly inferred from the call graph, and then, the sensitive transmissions can be detected by analyzing the network traffic per transfer and sensitive information with a machine learning classifier. We validate TraceDroid on 1444 malware and 700 benign applications. And our experiments show that TraceDroid can detect 3433 sensitive connections across 2144 apps with an accuracy of \(94\%\).
This work is supported by the National Key Research and Development Program of China (No. 2021YFB3100400), the Shandong Science Fund for Excellent Young Scholars (No. 2022HWYQ-038).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cyber security statistics the ultimate list of stats, data & trends. purplesec.us/resources/cyber-security-statistics/
Arzt, S., et al.: Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps. In: PLDI (2014)
Cai, Z., He, Z.: Trading private range counting over big iot data. In: 39th IEEE International Conference on Distributed Computing Systems, ICDCS 2019, Dallas, TX, USA, July 7–10, 2019. pp. 144–153. IEEE (2019). https://doi.org/10.1109/ICDCS.2019.00023
Cai, Z., He, Z., Guan, X., Li, Y.: Collective data-sanitization for preventing sensitive information inference attacks in social networks. IEEE Trans. Dependable Secur. Comput. 15(4), 577–590 (2018). https://doi.org/10.1109/TDSC.2016.2613521
Cai, Z., Zheng, X.: A private and efficient mechanism for data uploading in smart cyber-physical systems. IEEE Trans. Netw. Sci. Eng. 7(2), 766–775 (2020). https://doi.org/10.1109/TNSE.2018.2830307
Cai, Z., Zheng, X., Wang, J., He, Z.: Private data trading towards range counting queries in internet of things. IEEE Trans. Mob. Comput. (2022)
Chen, X., et al.: Android HIV: a study of repackaging malware for evading machine-learning detection. IEEE Trans. Inf. Forensics Security 15, 987–1001 (2019)
Chen, X., Zhu, S.: Droidjust: automated functionality-aware privacy leakage analysis for android applications. In: WiSec (2015)
Enck, W., et al.: Taintdroid: an information-flow tracking system for realtime privacy monitoring on smartphones. In: OSDI (2010)
Gordon, M.I., Kim, D., Perkins, J.H., Gilham, L., Nguyen, N., Rinard, M.C.: Information flow analysis of android applications in droidsafe. In: NDSS (2015)
Grace, M.C., Zhou, Y., Zhang, Q., Zou, S., Jiang, X.: Riskranker: scalable and accurate zero-day android malware detection. In: Davies, N., Seshan, S., Zhong, L. (eds.) The 10th International Conference on Mobile Systems, Applications, and Services, MobiSys’12, Ambleside, United Kingdom - June 25–29, 2012. pp. 281–294. ACM (2012). https://doi.org/10.1145/2307636.2307663
Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Ijcai (1995)
Lee, J., Lee, S., Lee, H.: Screening smartphone applications using malware family signatures. Comput. Secur. 52, 234–249 (2015). https://doi.org/10.1016/j.cose.2015.02.003
Lu, K., et al.: Checking more and alerting less: Detecting privacy leakages via enhanced data-flow analysis and peer voting. In: NDSS (2015)
Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Beyond blacklists: Learning to detect malicious web sites from suspicious urls. In: KDD (2009)
Mariconti, E., Onwuzurike, L., Andriotis, P., Cristofaro, E.D., Ross, G., Stringhini, G.: Mamadroid: Detecting android malware by building markov chains of behavioral models (2017)
Meng, Z., Xiong, Y., Huang, W., Qin, L., Jin, X., Yan, H.: Appscalpel: combining static analysis and outlier detection to identify and prune undesirable usage of sensitive data in android applications. Neurocomputing 341, 10–25 (2019). https://doi.org/10.1016/j.neucom.2019.01.105
Pandita, R., Xiao, X., Yang, W., Enck, W., Xie, T.: WHYPER: towards automating risk assessment of mobile applications. In: King, S.T. (ed.) Proceedings of the 22th USENIX Security Symposium, Washington, DC, USA, August 14–16, 2013. pp. 527–542. USENIX Association (2013). www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/pandita
Qu, Z., Rastogi, V., Zhang, X., Chen, Y., Zhu, T., Chen, Z.: Autocog: Measuring the description-to-permission fidelity in android applications. In: Ahn, G., Yung, M., Li, N. (eds.) Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ, USA, November 3–7, 2014. pp. 1354–1365. ACM (2014). https://doi.org/10.1145/2660267.2660287
Raghuramu, A., Zang, H., Chuah, C.N.: Uncovering the footprints of malicious traffic in cellular data networks. In: PAM (2015)
Rasthofer, S., Arzt, S., Bodden, E.: A machine-learning approach for classifying and categorizing android sources and sinks. In: NDSS (2014)
Ren, J., Rao, A., Lindorfer, M., Legout, A., Choffnes, D.: Recon: Revealing and controlling pii leaks in mobile network traffic. In: MobiSys (2016)
Sihan, Q.: Research progress on android security. Ruan Jian Xue Bao J. Softw. 1, 27 (2016)
Vallée-Rai, R. Co, P., Gagnon, E., Hendren, L.J., Lam, P., Sundaresan, V.: Soot - a java bytecode optimization framework. In: MacKay, S.A., Johnson, J.H. (eds.) Proceedings of the 1999 conference of the Centre for Advanced Studies on Collaborative Research, November 8–11, 1999, Mississauga, Ontario, Canada. p. 13. IBM (1999). dl.acm.org/citation.cfm?id=782008
Wang, Z., Li, C., Yuan, Z., Guan, Y., Xue, Y.: Droidchain: a novel android malware detection method based on behavior chains. Pervasive Mob. Comput. 32, 3–14 (2016). https://doi.org/10.1016/j.pmcj.2016.06.018
Wüchner, T., Cislak, A., Ochoa, M., Pretschner, A.: Leveraging compression-based graph mining for behavior-based malware detection. IEEE Trans. Dependable Secur. Comput. 16(1), 99–112 (2019)
Xia, M., Gong, L., Lyu, Y., Qi, Z., Liu, X.: Effective real-time android application auditing. In: S and P (2015)
Yang, W., Xiao, X., Andow, B., Li, S., Xie, T., Enck, W.: Appcontext: Differentiating malicious and benign mobile app behaviors using context. In: Bertolino, A., Canfora, G., Elbaum, S.G. (eds.) 37th IEEE/ACM International Conference on Software Engineering, ICSE 2015, Florence, Italy, May 16–24, 2015, Volume 1. pp. 303–313. IEEE Computer Society (2015). https://doi.org/10.1109/ICSE.2015.50
Zheng, X., Cai, Z.: Privacy-preserved data sharing towards multiple parties in industrial Iots. IEEE J. Sel. Areas Commun. 38(5), 968–979 (2020). https://doi.org/10.1109/JSAC.2020.2980802
Zhou, Y., Jiang, X.: Dissecting android malware: Characterization and evolution. In: S and P (2012)
Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: Detecting malicious apps in official and alternative android markets. In: 19th Annual Network and Distributed System Security Symposium, NDSS 2012, San Diego, California, USA, February 5–8, 2012. The Internet Society (2012), www.ndss-symposium.org/ndss2012/hey-you-get-my-market-detecting-malicious-apps-official-and-alternative-android-markets
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, Y. et al. (2022). TraceDroid: Detecting Android Malware by Trace of Privacy Leakage. In: Wang, L., Segal, M., Chen, J., Qiu, T. (eds) Wireless Algorithms, Systems, and Applications. WASA 2022. Lecture Notes in Computer Science, vol 13471. Springer, Cham. https://doi.org/10.1007/978-3-031-19208-1_38
Download citation
DOI: https://doi.org/10.1007/978-3-031-19208-1_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19207-4
Online ISBN: 978-3-031-19208-1
eBook Packages: Computer ScienceComputer Science (R0)