Unpacking Gender Stereotypes in Film Dialogue | SpringerLink
Skip to main content

Unpacking Gender Stereotypes in Film Dialogue

  • Conference paper
  • First Online:
Social Informatics (SocInfo 2022)

Abstract

The representation of gender stereotypes in films profoundly impacts societal values and beliefs since they reflect and can potentially reinforce prevailing social norms. Hence, it is crucial to unravel how such stereotypes arise from gender portrayal in films. In this paper, we decompose the gender differences portrayed in movies along several socio- and psycho-linguistic dimensions. In particular, we consider gender disparities in four dialogue dimensions: 1) the degree of assertion, 2) the degree of confirmation, 3) the valence of emotions, and 4) the topic. Empirical analyses show that the valence of emotions expressed in the dialogue explains the most variation in gender disparity. Moreover, for certain kinds of dialogue, such as those occurring between different gender actors, the topic of discussion is also a strong predictor of gender differences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We compute the gender ladenness scores using only the 274,596 words in the lexicon and dropped out-of-vocabulary words. We also removed stopwords as well as words that occurred less than 50 times in the movie scripts.

References

  1. Angrist, J.D., Pischke, J.S.: Mostly Harmless Econometrics: An Empiricist’s Companion. Princeton University Press (2008)

    Google Scholar 

  2. Cape, G.S.: Addiction, stigma and movies. Acta Psychiatrica Scandinavica 107(3), 163–169 (2003)

    Article  Google Scholar 

  3. Carli, L.L.: Gender, language, and influence. J. Pers. Soc. Psychol. 59(5), 941–951 (1990)

    Article  Google Scholar 

  4. Clark, J.M., Paivio, A.: Extensions of the paivio, yuille, and madigan (1968) norms. Behav. Res. Methods Instrum. Comput. 36(3), 371–383 (2004)

    Article  Google Scholar 

  5. Danescu-Niculescu-Mizil, C., Lee, L.: Chameleons in imagined conversations: a new approach to understanding coordination of linguistic style in dialogs. arXiv preprint arXiv:1106.3077 (2011)

  6. Dhillon, P.S., Talukdar, P.P., Crammer, K.: Inference-driven metric learning for graph construction. In: 4th North East Student Colloquium on Artificial Intelligence (2010)

    Google Scholar 

  7. Feng, D., O’Halloran, K.L.: The multimodal representation of emotion in film: integrating cognitive and semiotic approaches. Semiotica 2013(197), 79–100 (2013)

    Article  Google Scholar 

  8. Fitzpatrick, M.A., Mulac, A., Dindia, K.: Gender-preferential language use in spouse and stranger interaction. J. Lang. Soc. Psychol. 14(1–2), 18–39 (1995)

    Article  Google Scholar 

  9. Holmes, J.: Women, language and identity. Journal of Sociolinguistics 1(2), 195–223 (1997). https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-9481.00012, eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-9481.00012

  10. Holtzman, L.: Media Messages: What Film, Television, and Popular Music Teach Us About Race, Class, Gender, and Sexual Orientation. Routledge, 2 edn. (2014). https://doi.org/10.4324/9781315702469, https://www.taylorfrancis.com/books/9781315702469

  11. Kagan, D., Chesney, T., Fire, M.: Using data science to understand the film industry’s gender gap. Palgrave Commun. 6(1), 1–16 (2020)

    Article  Google Scholar 

  12. Kollock, P., Schwartz, P., Blumstein, P., Blumstein, P.: Sex and power in interaction: conversational privileges and duties. Am. Soc. Rev. 50, 34–46 (1985)

    Article  Google Scholar 

  13. Lakoff, R.T.: Language and Woman’s Place: Text and Commentaries. Oxford University Press (2004)

    Google Scholar 

  14. Leaper, C., Ayres, M.M.: A meta-analytic review of gender variations in adults’ language use: talkativeness, affiliative speech, and assertive speech. Pers. Soc. Psychol. Rev. 11(4), 328–363 (2007). https://doi.org/10.1177/1088868307302221

    Article  Google Scholar 

  15. Leaper, C., Robnett, R.D.: Women are more likely than men to use tentative language, aren’t they? a meta-analysis testing for gender differences and moderators. Psychol. Women Quart. 35(1), 129–142 (2011)

    Article  Google Scholar 

  16. Malandrakis, N., Narayanan, S.S.: Therapy language analysis using automatically generated psycholinguistic norms. In: Sixteenth Annual Conference of the International Speech Communication Association (2015)

    Google Scholar 

  17. Newman, M.L., Groom, C.J., Handelman, L.D., Pennebaker, J.W.: Gender differences in language use: an analysis of 14,000 text samples. Discourse Process. 45(3), 211–236 (2008)

    Article  Google Scholar 

  18. Ramakrishna, A., Martínez, V.R., Malandrakis, N., Singla, K., Narayanan, S.: Linguistic analysis of differences in portrayal of movie characters. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1669–1678 (2017)

    Google Scholar 

  19. Sap, M., Prasettio, M.C., Holtzman, A., Rashkin, H., Choi, Y.: Connotation frames of power and agency in modern films. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 2329–2334 (2017)

    Google Scholar 

  20. Schofield, A., Mehr, L.: Gender-distinguishing features in film dialogue. In: Proceedings of the Fifth Workshop on Computational Linguistics for Literature, pp. 32–39 (2016)

    Google Scholar 

  21. Talbot, M.: Gender stereotypes: reproduction and challenge. In: Holmes, J., Meyerhoff, M. (eds.) The Handbook of Language and Gender, pp. 468–486. Blackwell Publishing Ltd, Oxford, UK (2003). https://doi.org/10.1002/9780470756942.ch20

  22. Tan, E.S.: Emotion and the Structure of Narrative Film: Film As An Emotion Machine. Routledge (2013). Google-Books-ID: 5khUAQAAQBAJ

    Google Scholar 

  23. Tausczik, Y.R., Pennebaker, J.W.: The psychological meaning of words: LIWC and computerized text analysis methods. J. Lang. Soc. Psychol. 29(1), 24–54 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulin Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, Y., Hao, Y., Dhillon, P. (2022). Unpacking Gender Stereotypes in Film Dialogue. In: Hopfgartner, F., Jaidka, K., Mayr, P., Jose, J., Breitsohl, J. (eds) Social Informatics. SocInfo 2022. Lecture Notes in Computer Science, vol 13618. Springer, Cham. https://doi.org/10.1007/978-3-031-19097-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19097-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19096-4

  • Online ISBN: 978-3-031-19097-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics