Data-Driven Analysis of Central Bank Digital Currency (CBDC) Projects Drivers | SpringerLink
Skip to main content

Data-Driven Analysis of Central Bank Digital Currency (CBDC) Projects Drivers

  • Conference paper
  • First Online:
Mathematical Research for Blockchain Economy (MARBLE 2022)

Part of the book series: Lecture Notes in Operations Research ((LNOR))

  • 378 Accesses

Abstract

In this paper, we use a variety of machine learning methods to quantify the extent to which economic and technological factors are predictive of the progression of Central Bank Digital Currencies (CBDC) within a country, using as our measure of this progression the CBDC project index (CBDCPI). By extracting and aggregating cross country data provided by several international organisations, we find that the financial development index is the most important feature for our model, followed by the GDP per capita and an index of the voice and accountability of the country’s population. Our results are consistent with previous qualitative research which finds that countries with a high degree of financial development or digital infrastructure have more developed CBDC projects. Further, we obtain robust results when predicting the CBDCPI at different points in time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 20591
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 25739
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 25739
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We took 12-week moving average of Google Trends search results.

  2. 2.

    The updated CBDC projects status is available in an online annex of [4] (See https://www.bis.org/publ/work880.htm). The information is said to have been collected through desk research and with the help of contacts at several individual central banks.

  3. 3.

    See Financial Development Index Database by IMF for more information. (https://data.imf.org/?sk=f8032e80-b36c-43b1-ac26-493c5b1cd33b).

  4. 4.

    The dataset includes all projects announced as of 1 December 2020. For more information, see https://www.bis.org/publ/work880.htm.

References

  1. Adrian, T., & Mancini-Griffoli, T. (2019). Central bank digital currencies: 4 questions and answers, IMF Blog.

    Google Scholar 

  2. Agur, I., Anil, A., & Dell’Ariccia, G. (2022). Designing central bank digital currencies. Journal of Monetary Economics, forthcoming.

    Google Scholar 

  3. Auer, R., Cornelli, G., & Frost, J. (2020). Covid-19, cash and the future of payments. BIS Bulletin, 3.

    Google Scholar 

  4. Auer, R., Cornelli, G., & Frost, J. (2020). Rise of the central bank digital currencies: drivers, approaches and technologies. BIS working paper, No. 880.

    Google Scholar 

  5. Bank for International Settlement. (2020). Central bank group to assess potential cases for central bank digital currencies. BIS press release, 21 Jan 2020. https://www.bis.org/press/p200121.htm.

  6. Bank for International Settlement. (2018). Central bank digital currencies (p. 174). Markets committee papers, No: CPMI.

    Google Scholar 

  7. Barontini, C., & Holden, H. (2019). Proceeding with caution-a survey on central bank digital currency (p. 101). No: BIS papers.

    Google Scholar 

  8. Bindseil, U. (2020). Tiered CBDC and the financial system. Working paper series 2351, European Central Bank. https://ideas.repec.org/p/ecb/ecbwps/20202351.html.

  9. Boar, C., Holden, H., & Wadsworth, A. (2020). Impending arrival-a sequel to the survey on central bank digital currency (p. 107). No: BIS papers.

    Google Scholar 

  10. Breiman, L. (2001). Random forests. Machine Learning. 45(1), 5–32. https://link.springer.com/article/10.1023/A:1010933404324.

  11. Brühl, V. (2019). Libra–a differentiated view on facebook’s virtual currency project. CFS working paper series 633, Frankfurt a. M. http://hdl.handle.net/10419/206412

  12. Davoodalhosseini, S. M. R. (2018). Central bank digital currency and monetary policy. Staff working papers, Bank of Canada. https://EconPapers.repec.org/RePEc:bca:bocawp:18-36.

  13. Diem Association. (2020). Diem white paper. https://www.diem.com/en-us/white-paper.

  14. European Central Bank. (2021). ECB digital euro consultation ends with record level of public feedback. ECB press release, 13 Jan 2021. https://www.ecb.europa.eu/press/pr/date/2021/html/ecb.pr210113~ec9929f446.en.html.

  15. Fernández-Villaverde, J., Sanches, D., Schilling, L., & Uhlig, H. (2020). Central bank digital currency: Central banking for all? Review of Economic Dynamics. http://www.sciencedirect.com/science/article/pii/S1094202520301150.

  16. Financial Stability Board. (2020). Regulation, supervision and oversight of “global stablecoin” arrangements. Financial Stability Board.

    Google Scholar 

  17. von zur Gathen, J. (2015). CryptoSchool. Berlin: Springer-Verlag. https://link.springer.com/book/10.1007/978-3-662-48425-8.

  18. Grym, A., Heikkinen, P., Kauko, K., & Takala, K. (2017). Central bank digital currency. Banque de France: Tech. rep.

    Google Scholar 

  19. McKelvey, R.D., & Zavoina, W. (1975). A statistical model for the analysis of ordinal level dependent variables. The Journal of Mathematical Sociology, 4(1), 103–120. https://www.tandfonline.com/doi/abs/10.1080/0022250X.1975.9989847.

  20. Nakamoto, S. (2009). Bitcoin: A peer-to-peer electronic cash system. http://www.bitcoin.org/bitcoin.pdf.

  21. Narayanan, A., Bonneau, J., Felten, E., Miller, A., & Goldfeder, S. (2016). Bitcoin and cryptocurrency technologies: A comprehensive introduction. USA: Princeton University Press.

    Google Scholar 

  22. Rosenblatt, F. (1961). Principles of neurodynamics: Perceptions and the theory of brain mechanism. Spartan Books.

    Google Scholar 

  23. Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986). Learning internal representations by error propagation, pp. 318–362. Cambridge, MA: MIT Press.

    Google Scholar 

  24. Soderberg, G., et al. (2022). Behind the scenes of central bank digital currency emerging trends, insights, and policy lessons. FinTech Notes No. 2022/004, IMF. https://www.imf.org/en/Publications/fintech-notes/Issues/2022/02/07/Behind-the-Scenes-of-Central-Bank-Digital-Currency-512174.

  25. Svirydzenka, K. (2016). Introducing a new broad-based index of financial development. IMF working papers, No. 15.

    Google Scholar 

  26. Economist, The. (2020). Will central-bank digital currencies break the banking system? (pp. 0013–0613). ISSN: Tech. rep. Dec.

    Google Scholar 

  27. Tobin, J. (1987) The case for preserving regulatory distinctions. Proceedings of the Economic Policy Symposium, 167–83.

    Google Scholar 

  28. Wood, G., et al. (2014). Ethereum: A secure decentralised generalised transaction ledger. Ethereum project yellow paper, 151(2014), 1–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiko Matsui .

Editor information

Editors and Affiliations

A Appendix

A Appendix

This annex gives additional tables, regression results and figures to complement the paper. See main text for further discussion.

1.1 A.1 CBDC Projects Status

Below shows the part of the updated project score of global CBDC development efforts, relating to [4] (as of December 2020).Footnote 4 Note that only the countries with index of 3 (live CBDC) and 2 (pilot) as of December 2020 are listed here.

Country

   Overall*

   Overall (Aug 20)

   Retail*

   Wholesale*

Bahamas

   3

   2

   3

   0

Canada

   3

   2

   1

   2

Switzerland

   3

   1

   1

   2

Euro area (ECB)

   3

   2

   1

   2

France

   3

   2

   1

   2

Japan

   3

   2

   1

   2

South Africa

   3

   1

   1

   2

United Arab Emirates  

   2

   2

   0

   2

Australia

   2

   1

   1

   1

China

   2

   2

   2

   0

Ecuador

   2

   2

   2

   0

Eastern Caribbean

   2

   2

   2

   0

United Kingdom

   2

   2

   1

   1

Hong Kong

   2

   2

   0

   2

Indonesia

   2

   1

   1

   1

India

   2

   0

   1

   1

South Korea

   2

   2

   2

   0

Saudi Arabia

   2

   2

   0

   2

Sweden

   2

   2

   2

   0

Singapore

   2

   2

   0

   2

Swaziland

   2

   1

   1

   1

Thailand

   2

   2

   0

   2

Ukraine

   2

   2

   2

   0

Uruguay

   2

   2

   2

   0

*As of December 2020.

1.2 Top 10 Features for the Random Forest Classifier with Aggregated Data

Tables 7 and 8 give the 10 most important independent variables for the random forest classifier with aggregated data (data averaged over the period 2014–19, subject to data availability), with August 2020 and December 2020 CBDCPI data as an objective variable, respectively.

Table 7 Most important features for the random forest classifier (Aug 2020)
Table 8 Most important features for the random forest classifier (Dec 2020)

1.3 A.3 Top 10 Features for the Random Forest Classifier with Full Data

Tables 9 and 10 show the 10 most important index for the random forest classifier with full data, with August 2020 and December 2020 CBDCPI data as an objective variable, respectively.

Table 9 Most important features for the random forest classifier (Aug 2020)
Table 10 Most important features for the random forest classifier (Dec 2020)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Matsui, T., Perez, D. (2023). Data-Driven Analysis of Central Bank Digital Currency (CBDC) Projects Drivers. In: Pardalos, P., Kotsireas, I., Guo, Y., Knottenbelt, W. (eds) Mathematical Research for Blockchain Economy. MARBLE 2022. Lecture Notes in Operations Research. Springer, Cham. https://doi.org/10.1007/978-3-031-18679-0_6

Download citation

Publish with us

Policies and ethics