New Classes of Facets for Complementarity Knapsack Problems | SpringerLink
Skip to main content

New Classes of Facets for Complementarity Knapsack Problems

  • Conference paper
  • First Online:
Combinatorial Optimization (ISCO 2022)

Abstract

The complementarity knapsack problem (CKP) is a knapsack problem with real-valued variables and complementarity conditions between pairs of its variables. We extend the polyhedral studies of De Farias et al. for CKP, by proposing three new families of cutting-planes that are all obtained from a combinatorial concept known as a pack. Sufficient conditions for these inequalities to be facet-defining, based on the concept of a maximal switching pack, are also provided. Moreover, we answer positively a conjecture by De Farias et al. about the separation complexity of the inequalities introduced in their work.

A. Del Pia is partially funded by ONR grant N00014-19–1-2322. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Office of Naval Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    These are not the typical “cover inequalities” in 0–1 programming.

References

  1. Atamtürk, A.: Cover and pack inequalities for (mixed) integer programming. Ann. Oper. Res. 139(1), 21–38 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balas, E.: Facets of the knapsack polytope. Math. Program. 8(1), 146–164 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balas, E., Zemel, E.: Facets of the knapsack polytope from minimal covers. SIAM J. Appl. Math. 34(1), 119–148 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beale, E.M.L., Tomlin, J.A.: Special facilities in a general mathematical programming system for non-convex problems using ordered sets of variables. OR 69(447–454), 99 (1970)

    Google Scholar 

  5. Beaumont, N.: An algorithm for disjunctive programs. Eur. J. Oper. Res. 48(3), 362–371 (1990)

    Article  MATH  Google Scholar 

  6. Crowder, H., Johnson, E.L., Padberg, M.: Solving large-scale zero-one linear programming problems. Oper. Res. 31(5), 803–834 (1983)

    Article  MATH  Google Scholar 

  7. De Farias, I., Johnson, E.L., Nemhauser, G.L.: Branch-and-cut for combinatorial optimization problems without auxiliary binary variables. Knowl. Eng. Rev. 16(1), 25–39 (2001)

    Article  MATH  Google Scholar 

  8. De Farias Jr, I.R., Johnson, E.L., Nemhauser, G.L.: Facets of the complementarity knapsack polytope. Math. Oper. Res. 27(1), 210–226 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Del Pia, A., Linderoth, J., Zhu, H.: Multi-cover inequalities for totally-ordered multiple knapsack sets. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 193–207. Springer, Heidelberg (2021). https://doi.org/10.1007/s10107-022-01817-4

  10. Del Pia, A., Linderoth, J., Zhu, H.: Multi-cover inequalities for totally-ordered multiple knapsack sets: theory and computation. arXiv preprint arXiv:2106.00301 (2021)

  11. Del Pia, A., Linderoth, J., Zhu, H.: On the complexity of separation from the Knapsack Polytope. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 168–180. Springer, Cham

    Google Scholar 

  12. de Farias, I.R., Kozyreff, E., Zhao, M.: Branch-and-cut for complementarity-constrained optimization. Math. Program. Comput. 6(4), 365–403 (2014). https://doi.org/10.1007/s12532-014-0070-2

    Article  MathSciNet  MATH  Google Scholar 

  13. de Farias, I.R., Zhao, M.: A polyhedral study of the semi-continuous knapsack problem. Math. Program. 142(1–2), 169–203 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fischer, T., Pfetsch, M.E.: Branch-and-cut for linear programs with overlapping SOS1 constraints. Math. Program. Comput. 10(1), 33–68 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.P.: Lifted cover inequalities for \(0\text{- }1\) integer programs: complexity. INFORMS J. Comput. 11(1), 117–123 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.: Lifted cover inequalities for 0–1 integer programs: computation. INFORMS J. Comput. 10(4), 427–437 (1998)

    Article  MathSciNet  Google Scholar 

  17. Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.: Sequence independent lifting in mixed integer programming. J. Comb. Optim. 4(1), 109–129 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hojny, C., Gally, T., Habeck, O., Lüthen, H., Matter, F., Pfetsch, M.E., Schmitt, A.: Knapsack polytopes: a survey. Ann. Oper. Res. 292, 1–49 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103 (1972)

    Google Scholar 

  20. Keha, A.B., de Farias Jr, I.R., Nemhauser, G.L.: A branch-and-cut algorithm without binary variables for nonconvex piecewise linear optimization. Oper. Res. 54(5), 847–858 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Klabjan, D., Nemhauser, G.L., Tovey, C.: The complexity of cover inequality separation. Oper. Res. Lett. 23(1–2), 35–40 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Padberg, M.W.: (1, k)-configurations and facets for packing problems. Math. Program. 18(1), 94–99 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  23. Weismantel, R.: On the 0/1 knapsack polytope. Math. Program. 77(3), 49–68 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wolsey, L.A.: Faces for a linear inequality in 0–1 variables. Math. Program. 8(1), 165–178 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoran Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Del Pia, A., Linderoth, J., Zhu, H. (2022). New Classes of Facets for Complementarity Knapsack Problems. In: Ljubić, I., Barahona, F., Dey, S.S., Mahjoub, A.R. (eds) Combinatorial Optimization. ISCO 2022. Lecture Notes in Computer Science, vol 13526. Springer, Cham. https://doi.org/10.1007/978-3-031-18530-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18530-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18529-8

  • Online ISBN: 978-3-031-18530-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics