Abstract
Despite omnipresent digitalization, the infrastructure for information processing in companies often lags years behind. As a result, employees have to compensate for the inadequacies of legacy software and spend their time collecting, copying, and reviewing data spread across multiple applications. Robotic Process Automation can help automate such structured and repetitive tasks by using software robots that mimic the worker’s behavior. However, being mainly driven by industry, no modeling standard or possibilities for interoperability between different RPA vendors exist, which may lead to a vendor lock-in over time, for example. In this paper, we extend the ontology of RPA operations, that comprises conceptualizations for tasks that can be automated by RPA, and apply it for modeling RPA bots in a vendor-independent manner. To this end, a novel platform for modeling conceptual RPA bots and a corresponding prototype are presented, which open up new possibilities when creating and managing RPA bots.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For example, in UiPath, there are Application Scope operations: https://docs.uipath.com/activities/docs/excel-application-scope (accessed 03.03.2022).
- 2.
OoP = Ontology of Plans. See [24] for information on the upper and foundational ontologies used in the ORPAO.
- 3.
This design is based on a recommendation for representing ordered lists: https://www.w3.org/TR/swbp-n-aryRelations/#pattern2 (accessed: 11.03.2022).
- 4.
Demonstration of the prototype and its components: https://youtu.be/Pq5FIS9KtqA. Source code: https://github.com/bptlab/conceptual-bot-platform.
- 5.
- 6.
References
van der Aalst, W.M.P., Bichler, M., Heinzl, A.: Robotic process automation. Bus. Inf. Syst. Eng. 60(4), 269–272 (2018). https://doi.org/10.1007/s12599-018-0542-4
Aguirre, S., Rodriguez, A.: Automation of a business process using robotic process automation (RPA): a case study. In: Figueroa-García, J.C., López-Santana, E.R., Villa-Ramírez, J.L., Ferro-Escobar, R. (eds.) WEA 2017. CCIS, vol. 742, pp. 65–71. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66963-2_7
Corea, C., Fellmann, M., Delfmann, P.: Ontology-based process modelling - will we live to see it? In: Ghose, A., Horkoff, J., Silva Souza, V.E., Parsons, J., Evermann, J. (eds.) ER 2021. LNCS, vol. 13011, pp. 36–46. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89022-3_4
Correia, C., Da Silva, A.R.: Platform-independent specifications for robotic process automation applications. In: MODELSWARD 2022, pp. 379–386. SciTePress (2022). https://doi.org/10.5220/0010991200003119
Di Francescomarino, C., Ghidini, C., Rospocher, M., Serafini, L., Tonella, P.: Semantically-aided business process modeling. In: Bernstein, A., et al. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 114–129. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04930-9_8
Egger, A., ter Hofstede, A.H.M., Kratsch, W., Leemans, S.J.J., Röglinger, M., Wynn, M.T.: Bot log mining: using logs from robotic process automation for process mining. In: Dobbie, G., Frank, U., Kappel, G., Liddle, S.W., Mayr, H.C. (eds.) ER 2020. LNCS, vol. 12400, pp. 51–61. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62522-1_4
Enriquez, J.G., Jimenez-Ramirez, A., Dominguez-Mayo, F.J., Garcia-Garcia, J.A.: Robotic process automation: a scientific and industrial systematic mapping study. IEEE Access 8, 39113–39129 (2020). https://doi.org/10.1109/ACCESS.2020.2974934
Flechsig, C., Lohmer, J., Lasch, R.: Realizing the full potential of robotic process automation through a combination with BPM. In: Bierwirth, C., Kirschstein, T., Sackmann, D. (eds.) Logistics Management. LNL, pp. 104–119. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29821-0_8
Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: An ontology-driven process modeling framework. In: Galindo, F., Takizawa, M., Traunmüller, R. (eds.) DEXA 2004. LNCS, vol. 3180, pp. 13–23. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30075-5_2
Heidari, F., Loucopoulos, P., Brazier, F., Barjis, J.: A meta-meta-model for seven business process modeling languages. In: 2013 IEEE 15th Conference on Business Informatics, pp. 216–221. IEEE (2013). https://doi.org/10.1109/CBI.2013.38
Hepp, M., Roman, D.: An ontology framework for semantic business process management. Wirtschaftsinformatik Proceedings 2007, 423–440 (2007)
Herm, L.-V., Janiesch, C., Reijers, H.A., Seubert, F.: From symbolic RPA to intelligent RPA: challenges for developing and operating intelligent software robots. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp. 289–305. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85469-0_19
Hofmann, P., Samp, C., Urbach, N.: Robotic process automation. Electron. Mark. 30(1), 99–106 (2020). https://doi.org/10.1007/s12525-019-00365-8
Hüller, L., Jenß, K.E., Speh, S., Woelki, D., Völker, M., Weske, M.: Ark automate–an open-source platform for robotic process automation. In: BPM 2021 Demo Track, CEUR Workshop Proceedings, vol. 2973, pp. 126–130. CEUR-WS.org (2021)
Lacity, M., Willcocks, L., Craig, A.: Robotic process automation at Telefonica O2. MIS Q. Exec. 15(1) (2016)
Leno, V., Polyvyanyy, A., Dumas, M., La Rosa, M., Maggi, F.M.: Robotic process mining: vision and challenges. Bus. Inf. Syst. Eng. 63 (2020). https://doi.org/10.1007/s12599-020-00641-4
Object Management Group: Business Process Model and Notation (BPMN) (2014). www.omg.org/spec/BPMN/
Penttinen, E., Kasslin, H., Asatiani, A.: How to choose between robotic process automation and back-end system automation? In: ECIS 2018, AIS (2018)
Riehle, D.M., Jannaber, S., Delfmann, P., Thomas, O., Becker, J.: Automatically annotating business process models with ontology concepts at design-time. In: de Cesare, S., Frank, U. (eds.) ER 2017. LNCS, vol. 10651, pp. 177–186. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70625-2_17
Syed, R., et al.: Robotic process automation: contemporary themes and challenges. Comput. Ind. 115 (2020). https://doi.org/10.1016/j.compind.2019.103162
Van Zelst, S.J., Leemans, S.J.J.: Translating workflow nets to process trees: an algorithmic approach. Algorithms 13(11) (2020). https://doi.org/10.3390/a13110279
Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data Knowl. Eng. 68(9), 793–818 (2009). https://doi.org/10.1016/j.datak.2009.02.015
Völker, M., Siegert, S., Weske, M.: Adding decision management to robotic process automation. In: González Enríquez, J., Debois, S., Fettke, P., Plebani, P., van de Weerd, I., Weber, I. (eds.) BPM 2021. LNBIP, vol. 428, pp. 23–37. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85867-4_3
Völker, M., Weske, M.: Conceptualizing bots in robotic process automation. In: Ghose, A., Horkoff, J., Silva Souza, V.E., Parsons, J., Evermann, J. (eds.) ER 2021. LNCS, vol. 13011, pp. 3–13. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89022-3_1
Weske, M.: Business Process Management: Concepts, Languages, Architectures, 3 edn. Springer, Berlin, Heidelberg (2019). https://doi.org/10.1007/978-3-662-59432-2
Wewerka, J., Micus, C., Reichert, M.: Seven guidelines for designing the user interface in robotic process automation. In: 2021 IEEE 25th EDOCW, pp. 157–165. IEEE (2021). https://doi.org/10.1109/EDOCW52865.2021.00045
Wewerka, J., Reichert, M.: Robotic process automation–a systematic mapping study and classification framework. Enterp. Inf. Syst. 1–38 (2021). https://doi.org/10.1080/17517575.2021.1986862
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Völker, M., Weske, M. (2022). Ontology-Supported Modeling of Bots in Robotic Process Automation. In: Ralyté, J., Chakravarthy, S., Mohania, M., Jeusfeld, M.A., Karlapalem, K. (eds) Conceptual Modeling. ER 2022. Lecture Notes in Computer Science, vol 13607. Springer, Cham. https://doi.org/10.1007/978-3-031-17995-2_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-17995-2_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-17994-5
Online ISBN: 978-3-031-17995-2
eBook Packages: Computer ScienceComputer Science (R0)