Neuroimaging Harmonization Using cGANs: Image Similarity Metrics Poorly Predict Cross-Protocol Volumetric Consistency | SpringerLink
Skip to main content

Neuroimaging Harmonization Using cGANs: Image Similarity Metrics Poorly Predict Cross-Protocol Volumetric Consistency

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroimaging (MLCN 2022)

Abstract

Computer-aided clinical decision support tools for radiology often suffer from poor generalizability in multi-centric frameworks due to data heterogeneity. In particular, magnetic resonance images depend on a large number of acquisition protocol parameters as well as hardware and software characteristics that might differ between or even within institutions. In this work, we use a supervised image-to-image harmonization framework based on a conditional generative adversarial network to reduce inter-site differences in T1-weighted images using different dementia protocols. We investigate the use of different hybrid losses including standard voxel-wise distances and a more recent perceptual similarity metric, and how they relate to image similarity metrics and volumetric consistency in brain segmentation. In a test cohort of 30 multiprotocol patients affected by dementia, we show that despite improvements in terms of image similarity, the synthetic images generated do not necessarily result in reduced inter-site volumetric differences, therefore highlighting the mismatch between harmonization performance and the impact on the robustness of post-processing applications. Hence, our results suggest that traditional image similarity metrics such as PSNR or SSIM may poorly reflect the performance of different harmonization techniques in terms of improving cross-domain consistency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6291
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schmitter, D., et al.: An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer’s disease. NeuroImage Clin. 7, 7–17 (2015). https://doi.org/10.1016/j.nicl.2014.11.001

    Article  Google Scholar 

  2. Fartaria, M.J., et al.: Automated detection of white matter and cortical lesions in early stages of multiple sclerosis. J. Magn. Reson. Imaging 43, 1445–1454 (2016). https://doi.org/10.1002/jmri.25095

    Article  Google Scholar 

  3. Grøvik, E., Yi, D., Iv, M., Tong, E., Rubin, D., Zaharchuk, G.: Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI. J. Magn. Reson. Imaging 51, 175–182 (2020). https://doi.org/10.1002/jmri.26766

    Article  Google Scholar 

  4. Haller, S., et al.: Basic MR sequence parameters systematically bias automated brain volume estimation. Neuroradiology 58(11), 1153–1160 (2016). https://doi.org/10.1007/s00234-016-1737-3

    Article  Google Scholar 

  5. Hays, S.P., Zuo, L., Carass, A., Prince, J. Evaluating the impact of MR image contrast on whole brain segmentation. In: Medical Imaging 2022: Image Processing, vol. 12032, pp. 122–126. SPIE, April 2022

    Google Scholar 

  6. Dewey, B.E., et al.: DeepHarmony: a deep learning approach to contrast harmonization across scanner changes. Magn. Reson. Imaging 64, 160–170 (2019). https://doi.org/10.1016/j.mri.2019.05.041

    Article  Google Scholar 

  7. Dewey, B.E., et al.: A disentangled latent space for cross-site MRI harmonization. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 720–729. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_70

    Chapter  Google Scholar 

  8. Guan, H., Liu, Y., Yang, E., Yap, P.T., Shen, D., Liu, M.: Multi-site MRI harmonization via attention-guided deep domain adaptation for brain disorder identification. Med. Image Anal. 71, 102076 (2021). https://doi.org/10.1016/j.media.2021.102076

    Article  Google Scholar 

  9. Mirzaalian, H., et al.: Harmonizing diffusion MRI data across multiple sites and scanners. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 12–19. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_2

    Chapter  Google Scholar 

  10. Knyaz, V.A., Kniaz, V.V., Remondino, F.: Image-to-voxel model translation with conditional adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11129, pp. 601–618. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11009-3_37

    Chapter  Google Scholar 

  11. Yang, Q., Li, N., Zhao, Z., Fan, X., Chang, E.I.C., Xu, Y.: MRI cross-modality image-to-image translation. Sci. Rep. 10, 1–18 (2020). https://doi.org/10.1038/s41598-020-60520-6

    Article  Google Scholar 

  12. Dar, S.U.H., Yurt, M., Karacan, L., Erdem, A., Erdem, E., Cukur, T.: Image synthesis in multi-contrast MRI with conditional generative adversarial networks. IEEE Trans. Med. Imaging 38, 2375–2388 (2019). https://doi.org/10.1109/TMI.2019.2901750

    Article  Google Scholar 

  13. Kaiser, B., Albarqouni, S.: MRI to CT Translation with GANs. (2019)

    Google Scholar 

  14. Jung, M.M., Berg, B. Van Den, Postma, E., Huijbers, W.: Inferring PET from MRI with pix2pix. In: Benelux Conference on Artificial Intelligence, pp. 1–9 (2018)

    Google Scholar 

  15. Armanious, K., et al.: MedGAN: medical image translation using GANs. Comput. Med. Imaging Graph. 79 (2020). https://doi.org/10.1016/j.compmedimag.2019.101684

  16. Jog, A., Carass, A., Roy, S., Pham, D.L., Prince, J.L.: Random forest regression for magnetic resonance image synthesis. Med. Image Anal. 35, 475–488 (2017). https://doi.org/10.1016/j.media.2016.08.009

    Article  Google Scholar 

  17. Moyer, D., Ver Steeg, G., Tax, C.M.W., Thompson, P.M.: Scanner invariant representations for diffusion MRI harmonization. Magn. Reson. Med. 84, 2174–2189 (2020). https://doi.org/10.1002/mrm.28243

  18. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. Cvpr2018 13 (2018)

    Google Scholar 

  19. Wyman, B.T., et al.: Standardization of analysis sets for reporting results from ADNI MRI data. Alzheimer’s Dement. 9, 332–337 (2013). https://doi.org/10.1016/j.jalz.2012.06.004

    Article  Google Scholar 

  20. Tustison, N.J., Avants, B.B., Cook, P.A., Gee, J.C.: N4ITK : improved N3 bias correction with robust b-spline approximation. In: Proceedings of ISBI 2010, pp. 708–711 (2010)

    Google Scholar 

  21. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.: elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging. 29, 196–205 (2010). https://doi.org/10.1109/TMI.2009.2035616

  22. Grosenick, L., Klingenberg, B., Katovich, K., Knutson, B., Taylor, J.E.: Interpretable whole-brain prediction analysis with GraphNet. Neuroimage 72, 304–321 (2013). https://doi.org/10.1016/j.neuroimage.2012.12.062

    Article  Google Scholar 

  23. Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35, 73–101 (1964). https://doi.org/10.1214/aoms/1177703732

    Article  MathSciNet  MATH  Google Scholar 

  24. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. In: 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019). https://doi.org/10.1145/3292500.3330701

  25. Mccormick, M., Liu, X., Jomier, J., Marion, C., Ibanez, L.: ITK: enabling reproducible research and open science. Front. Neuroinform. 8, 1–11 (2014). https://doi.org/10.3389/fninf.2014.00013

    Article  Google Scholar 

  26. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  27. Vaserstein, L.N.: Markov processes over denumerable products of spaces, describing large systems of automata, Probl. Peredachi. Inf. 5(3), 64–72 (1969)

    Google Scholar 

Download references

Acknowledgments

This work was co-financed by Innosuisse (Grant 43087.1 IP-LS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica Ravano .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 321 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ravano, V. et al. (2022). Neuroimaging Harmonization Using cGANs: Image Similarity Metrics Poorly Predict Cross-Protocol Volumetric Consistency. In: Abdulkadir, A., et al. Machine Learning in Clinical Neuroimaging. MLCN 2022. Lecture Notes in Computer Science, vol 13596. Springer, Cham. https://doi.org/10.1007/978-3-031-17899-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17899-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17898-6

  • Online ISBN: 978-3-031-17899-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics