A Deep Learning-Based Interactive Medical Image Segmentation Framework | SpringerLink
Skip to main content

A Deep Learning-Based Interactive Medical Image Segmentation Framework

  • Conference paper
  • First Online:
Applications of Medical Artificial Intelligence (AMAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13540))

Included in the following conference series:

  • 797 Accesses

Abstract

Image segmentation is an essential component in medical image analysis. The case of 3D images such as MRI is particularly challenging and time consuming. Interactive or semi-automatic methods are thus highly desirable. While deep learning outperforms classical methods in automatic segmentation, its use in interactive frameworks is still limited. The main reason is that most neural networks do not lend themselves well to the required user interaction loop. We propose a general deep learning-based interactive framework for image segmentation, which embeds a base network in a user interaction loop with a user feedback memory. We propose to model the memory explicitly as a sequence of consecutive framework states, from which the features can be learned. A major difficulty is related to training, as the network inputs include the user feedback and thus depend on the network’s previous output. We propose to introduce a virtual user in the training process, modelled by simulating the user feedback from the current segmentation. We demonstrate our framework on the task of female pelvis MRI segmentation, using a new dataset. We evaluate our framework against existing work with the standard metrics and conduct a user evaluation. Our framework outperforms existing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6291
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amrehn, M., et al.: UI-Net: interactive artificial neural networks for iterative image segmentation based on a user model. In: Eurographics Workshop on Visual Computing for Biology and Medicine. The Eurographics Association (2017)

    Google Scholar 

  2. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 1, pp. 105–112 (2001)

    Google Scholar 

  3. Collins, T., et al.: Augmented reality guided laparoscopic surgery of the uterus. IEEE Trans. Med. Imaging 40(1), 371–380 (2021)

    Article  Google Scholar 

  4. Criminisi, A., Sharp, T., Blake, A.: GeoS: geodesic image segmentation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 99–112. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_9

    Chapter  Google Scholar 

  5. Deng, J., et al.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  6. Diaz-Pinto, A., et al.: Monai label: a framework for AI-assisted interactive labeling of 3D medical images. ArXiv abs/2203.12362 (2022)

    Google Scholar 

  7. Futrega, M., Milesi, A., Marcinkiewicz, M., Ribalta, P.: Optimized U-Net for brain tumor segmentation. ArXiv abs/2110.03352 (2021)

    Google Scholar 

  8. Goch, C.J., Metzger, J., Nolden, M.: Abstract: medical research data management using MITK and XNAT. In: Bildverarbeitung für die Medizin 2017. I, pp. 305–305. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54345-0_68

    Chapter  Google Scholar 

  9. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  10. Guo, Y., Gao, Y., Shen, D.: Deformable MR prostate segmentation via deep feature learning and sparse patch matching. IEEE Trans. Med. Imaging 35(4), 1077–1089 (2016)

    Article  Google Scholar 

  11. Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)

    Article  Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  13. Kikinis, R., Pieper, S.D., Vosburgh, K.G.: 3D slicer: a platform for subject-specific image analysis, visualization, and clinical support. In: Jolesz, F.A. (ed.) Intraoperative Imaging and Image-Guided Therapy, pp. 277–289. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-7657-3_19

    Chapter  Google Scholar 

  14. Kline, T.L., et al.: Performance of an artificial multi-observer deep neural network for fully automated segmentation of polycystic kidneys. J. Digit. Imaging 30(4), 442–448 (2017)

    Article  Google Scholar 

  15. Le’Clerc Arrastia, J., et al.: Deeply supervised UNet for semantic segmentation to assist dermatopathological assessment of basal cell carcinoma. J. Imaging 7(4), 71 (2021)

    Article  Google Scholar 

  16. Li, X., Zhong, Z., Wu, J., Yang, Y., Lin, Z., Liu, H.: Expectation-maximization attention networks for semantic segmentation. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9166–9175 (2019)

    Google Scholar 

  17. Liao, X., et al.: Iteratively-refined interactive 3d medical image segmentation with multi-agent reinforcement learning. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9391–9399 (2020)

    Google Scholar 

  18. Lin, T.Y., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2999–3007 (2017)

    Google Scholar 

  19. Minaee, S., Boykov, Y.Y., Porikli, F., Plaza, A.J., Kehtarnavaz, N., Terzopoulos, D.: Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 1 (2021)

    Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Sakinis, T., et al.: Interactive segmentation of medical images through fully convolutional neural networks. ArXiv abs/1903.08205 (2019)

    Google Scholar 

  22. Shan, F., et al.: Lung infection quantification of COVID-19 in CT images with deep learning. ArXiv (2020)

    Google Scholar 

  23. Siddique, N., Paheding, S., Elkin, C.P., Devabhaktuni, V.: U-net and its variants for medical image segmentation: a review of theory and applications. IEEE Access 9, 82031–82057 (2021)

    Article  Google Scholar 

  24. Siddiquee, M.M.R., Myronenko, A.: Redundancy reduction in semantic segmentation of 3D brain tumor MRIS. ArXiv abs/2111.00742 (2021)

    Google Scholar 

  25. Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)

    Article  Google Scholar 

  26. Wang, G., et al.: Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE Trans. Med. Imaging 37, 1562–1573 (2018)

    Article  Google Scholar 

  27. Wang, G., et al.: Deepigeos: a deep interactive geodesic framework for medical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 41, 1559–1572 (2019)

    Article  Google Scholar 

  28. Zhou, B., Chen, L., Wang, Z.: Interactive deep editing framework for medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 329–337. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_37

    Chapter  Google Scholar 

  29. Zhou, T., Li, L., Bredell, G., Li, J., Konukoglu, E.: Quality-aware memory network for interactive volumetric image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 560–570. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_52

    Chapter  Google Scholar 

  30. Zhu, H., Meng, F., Cai, J., Lu, S.: Beyond pixels: a comprehensive survey from bottom-up to semantic image segmentation and cosegmentation. J. Vis. Commun. Image Represent. 34, 12–27 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Mikhailov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mikhailov, I., Chauveau, B., Bourdel, N., Bartoli, A. (2022). A Deep Learning-Based Interactive Medical Image Segmentation Framework. In: Wu, S., Shabestari, B., Xing, L. (eds) Applications of Medical Artificial Intelligence. AMAI 2022. Lecture Notes in Computer Science, vol 13540. Springer, Cham. https://doi.org/10.1007/978-3-031-17721-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17721-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17720-0

  • Online ISBN: 978-3-031-17721-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics