Forest Height Estimation Using Sentinel-1 Interferometry. A Phase Unwrapping-Free Method Based on Least Squares Adjustment | SpringerLink
Skip to main content

Forest Height Estimation Using Sentinel-1 Interferometry. A Phase Unwrapping-Free Method Based on Least Squares Adjustment

  • Conference paper
  • First Online:
Geomatics for Green and Digital Transition (ASITA 2022)

Abstract

Forest height is a fundamental parameter in forestry. SAR interferometry (InSAR) has been widely used to retrieve digital elevation models (DEM), which are designed to provide a continuous representation of Earth topography, including forests. The ordinary InSAR framework requires a further phase unwrapping step in order to recover unambiguously the actual topography over the entire scene. The latter was proved to fail over vegetation due to low coherence values and therefore all algorithms tend to avoid these areas during the unwrapping, making InSAR-derived DEM over vegetation very unreliable. In this work, an alternate technique was coupled to least squares adjustment (LSA) with the aim of retrieving accurate forest heights avoiding phase unwrapping. It was computed entirely using free available Sentinel-1 data and SNAP ESA software. A mean absolute error equal to 2.6 m was found and it is consistent to the one estimated by LSA theoretical uncertainty. Preliminary outcomes suggest that proposed approach could be a valid alternative to retrieve forest height based on free data/software constituting an example of technological transfer of SAR technology into forest operative sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Segura, M., Kanninen, M.: Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica 1. Biotropica J. Biol. Conserv. 37, pp. 2–8 (2005)

    Google Scholar 

  2. Hao, Z., Zhang, J., Song, B., Ye, J., Li, B.: Vertical structure and spatial associations of dominant tree species in an old-growth temperate forest. For. Ecol. Manag. 252, 1–11 (2007)

    Article  Google Scholar 

  3. Larsen, D.R., Hann, D.W., Stearns-Smith, S.C.: Accuracy and precision of the tangent method of measuring tree height. West. J. Appl. For. 2, 26–28 (1987)

    Article  Google Scholar 

  4. Bragg, D.C.: Accurately measuring the height of (real) forest trees. J. For. 112, 51–54 (2014). https://doi.org/10.5849/jof.13-065

    Article  Google Scholar 

  5. De Petris, S., Berretti, R., Sarvia, F., Borgogno Mondino, E.: When a definition makes the difference: operative issues about tree height measures from RPAS-derived CHMs. iForest-Biogeosci. For. 13, 404 (2020)

    Google Scholar 

  6. Hüttich, C., Eberle, J., Shvidenko, A., Schepaschenko, D.: Supporting a forest observation system for Siberia: earth observation for monitoring, assessing and providing forest resource information (2014)

    Google Scholar 

  7. De Petris, S., Sarvia, F., Borgogno-Mondino, E.: RPAS-based photogrammetry to support tree stability assessment: longing for precision arboriculture. Urban For. Urban Green. 55, 126862 (2020)

    Article  Google Scholar 

  8. Vacchiano, G., Berretti, R., Motta, R., Mondino, E.B.: Assessing the availability of forest biomass for bioenergy by publicly available satellite imagery (2018)

    Google Scholar 

  9. Accastello, C., Brun, F., Borgogno-Mondino, E.: A spatial-based decision support system for wood harvesting management in mountain areas. Land Use Policy 67, 277–287 (2017)

    Article  Google Scholar 

  10. De Petris, S., Sarvia, F., Orusa, Borgogno-Mondino, E.: Mapping SAR geometric distortions and their stability along time: a new tool in Google Earth Engine based on Sentinel-1 image time series. Int. J. Remote Sens. 42, 9135–9154 (2021). https://doi.org/10.1080/01431161.2021.1992035

  11. De Petris, S., Sarvia, F., Borgogno-Mondino, E.: Multi-temporal mapping of flood damage to crops using sentinel-1 imagery: a case study of the Sesia River (October 2020). Remote Sens. Lett. 12, 459–469 (2021). https://doi.org/10.1080/2150704X.2021.1890262

    Article  Google Scholar 

  12. Sarvia, F., De Petris, S., Borgogno-Mondino, E.: Multi-scale remote sensing to support insurance policies in agriculture: from mid-term to instantaneous deductions. GISci. Remote Sens. 57, 770–784 (2020). https://doi.org/10.1080/15481603.2020.1798600

    Article  Google Scholar 

  13. Reiche, J., et al.: Combining satellite data for better tropical forest monitoring. Nat. Clim. Change 6, 120–122 (2016)

    Article  Google Scholar 

  14. Vollrath, A., Mullissa, A., Reiche, J.: Angular-based radiometric slope correction for Sentinel-1 on Google earth engine. Remote Sens. 12, 1867 (2020)

    Article  Google Scholar 

  15. Goldstein, R.M., Zebker, H.A., Werner, C.L.: Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci. 23, 713–720 (1988)

    Article  Google Scholar 

  16. Chen, C.W., Zebker, H.A.: Phase unwrapping for large SAR interferograms: statistical segmentation and generalized network models. IEEE Trans. Geosci. Remote Sens. 40, 1709–1719 (2002)

    Article  Google Scholar 

  17. Braun, A.: Retrieval of digital elevation models from Sentinel-1 radar data–open applications, techniques, and limitations. Open Geosci. 13, 532–569 (2021)

    Article  Google Scholar 

  18. Hagberg, J.O., Ulander, L.M., Askne, J.: Repeat-pass SAR interferometry over forested terrain. IEEE Trans. Geosci. Remote Sens. 33, 331–340 (1995)

    Article  Google Scholar 

  19. Santoro, M., Askne, J., Dammert, P.B.: Tree height influence on ERS interferometric phase in boreal forest. IEEE Trans. Geosci. Remote Sens. 43, 207–217 (2005)

    Article  Google Scholar 

  20. Romero-Puig, N., Lopez-Sanchez, J.M.: A review of crop height retrieval using InSAR strategies: techniques and challenges. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. (2021)

    Google Scholar 

  21. EEA: European forest types (2006)

    Google Scholar 

  22. Chianucci, F., et al.: Relationships between overstory and understory structure and diversity in semi-natural mixed floodplain forests at Bosco Fontana (Italy). iForest-Biogeosci. For. 9, 919 (2016)

    Google Scholar 

  23. Capolupo, A., Saponaro, M., Borgogno Mondino, E., Tarantino, E.: Combining interior orientation variables to predict the accuracy of Rpas-Sfm 3D models. Remote Sens. 12, 2674 (2020)

    Article  Google Scholar 

  24. IPLA: Indicazioni Tecnico-Metodologiche Per La Redazione Dei Piani Forestali Aziendali – PFA (2009). http://www.regione.piemonte.it/foreste/images/files/pian_gest/dwd/nuova_legge/Indirizzi_PFA_2016_AllegatoA.pdf

  25. Borgogno Mondino, E., Fissore, V., Lessio, A., Motta, R.: Are the new gridded DSM/DTMs of the Piemonte Region (Italy) proper for forestry? A fast and simple approach for a posteriori metric assessment. iForest Biogeosci. For. 9, 901–909 (2016). https://doi.org/10.3832/ifor1992-009

  26. Borgogno Mondino, E., Fissore, V., Falkowski, M.J., Palik, B.: How far can we trust forestry estimates from low-density LiDAR acquisitions? The Cutfoot Sioux experimental forest (MN, USA) case study. Int. J. Remote Sens. 41, 4551–4569 (2020)

    Article  Google Scholar 

  27. Veci, L.: SENTINEL-1 Toolbox SAR Basics Tutorial. ARRAY Systems Computing, Inc. and European Space Agency, Paris, France (2015)

    Google Scholar 

  28. ASF: ASF baseline tool. https://baseline.asf.alaska.edu

  29. Ferretti, A., Monti-Guarnieri, A.V., Prati, C.M., Rocca, F., Massonnet, D.: INSAR Principles B. ESA Publications (2007)

    Google Scholar 

  30. Santoro, M., Shvidenko, A., McCallum, I., Askne, J., Schmullius, C.: Properties of ERS-1/2 coherence in the Siberian boreal forest and implications for stem volume retrieval. Remote Sens. Environ. 106, 154–172 (2007)

    Article  Google Scholar 

  31. Askne, J., Santoro, M.: Multitemporal repeat pass SAR interferometry of boreal forests. IEEE Trans. Geosci. Remote Sens. 43, 1219–1228 (2005)

    Article  Google Scholar 

  32. Grandin, R.: Interferometric processing of SLC Sentinel-1 TOPS data. In: FRINGE 2015: Advances in the Science and Applications of SAR Interferometry and Sentinel-1 InSAR Workshop, Frascati, Italy, 23–27 March 2015 (2015)

    Google Scholar 

  33. Yagüe-Martínez, N., et al.: Interferometric processing of Sentinel-1 TOPS data. IEEE Trans. Geosci. Remote Sens. 54, 2220–2234 (2016)

    Article  Google Scholar 

  34. Goldstein, R.M., Werner, C.L.: Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 25, 4035–4038 (1998)

    Article  Google Scholar 

  35. Huang, Y., Van Genderen, J.L.: Comparison of several multi-look processing procedures in INSAR processing for ERS-1&2 tandem mode. In: ERS SAR Interferometry, p. 215 (1997)

    Google Scholar 

  36. Schreier, G.: SAR geocoding: data and systems. Wichmann (1993)

    Google Scholar 

  37. Richards, J.A.: Remote Sensing with Imaging Radar. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02020-9

  38. Clancy, J.: Site Surveying and Levelling. Routledge, Milton Park (2013)

    Google Scholar 

  39. Soja, M.J., Persson, H., Ulander, L.M.: Estimation of forest height and canopy density from a single InSAR correlation coefficient. IEEE Geosci. Remote Sens. Lett. 12, 646–650 (2014)

    Article  Google Scholar 

  40. Hanssen, R.F.: Radar Interferometry: Data Interpretation and Error Analysis. Springer, Dordrecht (2001). https://doi.org/10.1007/0-306-47633-9

  41. Ebong, M.B.: Weights for least-squares adjustments of levelling networks. Surv. Rev. 29, 175–180 (1987)

    Article  Google Scholar 

  42. Schwarz, C.R.: The trouble with constrained adjustments. Surv. Land Inf. Syst. 54, 202–209 (1994)

    Google Scholar 

  43. Pepe, A., Calò, F.: A review of interferometric synthetic aperture RADAR (InSAR) multi-track approaches for the retrieval of Earth’s surface displacements. Appl. Sci. 7, 1264 (2017)

    Article  Google Scholar 

  44. Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30, 79–82 (2005)

    Article  Google Scholar 

  45. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ross, A., Willson, V.L.: One-sample T-test. In: Basic and Advanced Statistical Tests, pp. 9–12. Brill Sense (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuele De Petris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Petris, S., Cuozzo, G., Notarnicola, C., Borgogno-Mondino, E. (2022). Forest Height Estimation Using Sentinel-1 Interferometry. A Phase Unwrapping-Free Method Based on Least Squares Adjustment. In: Borgogno-Mondino, E., Zamperlin, P. (eds) Geomatics for Green and Digital Transition. ASITA 2022. Communications in Computer and Information Science, vol 1651. Springer, Cham. https://doi.org/10.1007/978-3-031-17439-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17439-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17438-4

  • Online ISBN: 978-3-031-17439-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics