Spectral Measures from Sentinel-2 Imagery vs Ground-Based Data from Rapidscan© Sensor: Performances on Winter Wheat | SpringerLink
Skip to main content

Spectral Measures from Sentinel-2 Imagery vs Ground-Based Data from Rapidscan© Sensor: Performances on Winter Wheat

  • Conference paper
  • First Online:
Geomatics for Green and Digital Transition (ASITA 2022)

Abstract

Precision agriculture can be supported by different instruments and sensors to monitor crops and adjust agronomic practices. Remote sensing and derived vegetation index are one of the main techniques that allows to derive related-vegetation information. In this work the Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Red-Edge index (NDRE) derived by active handheld Rapidscan© (RS) and passive Sentinel-2 (S2) sensors were compared focusing on the wheat crop. To deal with different sensor wavebands centers, different S2 wavebands were considered and two different NDVI and four different NDRE derived by S2 data were computed. The comparison between RS and S2 was performed during three phenological stages of wheat: first node, flowering and milk. In each period, RS-derived indices were modelled to estimate the S2 ones. Results show that the best conversion models found was linear. In addition, a high correlation and R2 (>0.7) coefficient was found, except during flowering stage. Results confirm the opportunity to scale data and related agronomic information from ground sensor to satellite improving decision support system in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atzberger, C.: Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote sensing. 5, 949–981 (2013)

    Article  Google Scholar 

  2. Vannoppen, A., et al.: Wheat yield estimation from NDVI and regional climate models in Latvia. Remote Sensing. 12, 2206 (2020)

    Article  Google Scholar 

  3. Durgun, Y.Ö., Gobin, A., Duveiller, G., Tychon, B.: A study on trade-offs between spatial resolution and temporal sampling density for wheat yield estimation using both thermal and calendar time. International Journal of Applied Earth Observation and Geoinformation. 86, 101988 (2020)

    Google Scholar 

  4. Zhao, B., et al.: Exploring new spectral bands and vegetation indices for estimating nitrogen nutrition index of summer maize. Eur. J. Agron. 93, 113–125 (2018)

    Article  Google Scholar 

  5. Aranguren, M., Castellón, A., Aizpurua, A.: Crop sensor based non-destructive estimation of nitrogen nutritional status, yield, and grain protein content in wheat. Agriculture 10, 148 (2020)

    Article  Google Scholar 

  6. Denuit, J.-P., et al.: Management of nitrogen fertilization of winter wheat and potato crops using the chlorophyll meter for crop nitrogen status assessment. Agronomie 22, 847–853 (2002)

    Article  Google Scholar 

  7. Ramankutty, N., et al.: Trends in global agricultural land use: implications for environmental health and food security. Annu. Rev. Plant Biol. 69, 789–815 (2018)

    Article  Google Scholar 

  8. Taylor, J., Whelan, B.: A general introduction to precision agriculture. Australian Center for Precision Agriculture. (2005)

    Google Scholar 

  9. Messina, G., Praticò, S., Badagliacca, G., Di Fazio, S., Monti, M., Modica, G.: Monitoring Onion Crop “Cipolla Rossa di Tropea Calabria IGP” Growth and Yield Response to Varying Nitrogen Fertilizer Application Rates Using UAV Imagery. Drones. 5, 61 (2021). https://doi.org/10.3390/drones5030061

    Article  Google Scholar 

  10. Grisso, R.D., Alley, M.M., Thomason, W.E., Holshouser, D.L., Roberson, G.T.: Precision farming tools: variable-rate application. (2011)

    Google Scholar 

  11. Long, D.S., Carlson, G.R., DeGloria, S.D.: Quality of field management maps. In: Site-specific management for agricultural systems. pp. 251–271. Wiley Online Library (1995)

    Google Scholar 

  12. Bonfil, D.J.: Monitoring wheat fields by RapidScan: Accuracy and limitations. Adv. Anim. Biosci. 8, 333–337 (2017)

    Article  Google Scholar 

  13. Li, F., et al.: Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crop Res 157, 111–123 (2014)

    Article  Google Scholar 

  14. Delwart, S.: SENTINEL-2 User Handbook. European Space Agency. Available from: https://earth.esa.int/documents. esa. int/documents … (2015)

  15. Parida, B.R., Kumar, A., Ranjan, A.K.: Crop Types Discrimination and Yield Prediction Using Sentinel-2 Data and AquaCrop Model in Hazaribagh District, Jharkhand. KN-Journal of Cartography and Geographic Information. 1–13 (2021).

    Google Scholar 

  16. Misra, G., Cawkwell, F., Wingler, A.: Status of phenological research using Sentinel-2 data: A review. Remote Sensing. 12, 2760 (2020)

    Article  Google Scholar 

  17. Sarvia, F., De Petris, S., Borgogno-Mondino, E.: Mapping Ecological Focus Areas within the EU CAP Controls Framework by Copernicus Sentinel-2 Data. Agronomy 12, 406 (2022). https://doi.org/10.3390/agronomy12020406

    Article  Google Scholar 

  18. F, S., S, D.P., E, B.-M.: Multi-scale remote sensing to support insurance policies in agriculture: from mid-term to instantaneous deductions. null. 57, 770–784 (2020). https://doi.org/10.1080/15481603.2020.1798600

  19. Phiri, D., Simwanda, M., Salekin, S., R Nyirenda, V., Murayama, Y., Ranagalage, M.: Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sensing. 12, 2291 (2020)

    Google Scholar 

  20. Steinhausen, M.J., Wagner, P.D., Narasimhan, B., Waske, B.: Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions. Int. J. Appl. Earth Obs. Geoinf. 73, 595–604 (2018)

    Google Scholar 

  21. Sarvia, F., De Petris, S., Ghilardi, F., Xausa, E., Cantamessa, G., Borgogno-Mondino, E.: The Importance of Agronomic Knowledge for Crop Detection by Sentinel-2 in the CAP Controls Framework: A Possible Rule-Based Classification Approach. Agronomy 12, 1228 (2022). https://doi.org/10.3390/agronomy12051228

    Article  Google Scholar 

  22. Andrew, M.E., Wulder, M.A., Nelson, T.A.: Potential contributions of remote sensing to ecosystem service assessments. Prog. Phys. Geogr. 38, 328–353 (2014)

    Article  Google Scholar 

  23. Sarvia, F., De Petris, S., Borgogno-Mondino, E.: Exploring Climate Change Effects on Vegetation Phenology by MOD13Q1 Data: The Piemonte Region Case Study in the Period 2001–2019. Agronomy 11, 555 (2021). https://doi.org/10.3390/agronomy11030555

    Article  Google Scholar 

  24. Segarra, J., Buchaillot, M.L., Araus, J.L., Kefauver, S.C.: Remote sensing for precision agriculture: Sentinel-2 improved features and applications. Agronomy 10, 641 (2020)

    Article  Google Scholar 

  25. Mancini, A., Frontoni, E., Zingaretti, P.: Satellite and uav data for precision agriculture applications. In: 2019 International Conference on Unmanned Aircraft Systems (ICUAS). pp. 491–497. IEEE (2019)

    Google Scholar 

  26. Bukowiecki, J., Rose, T., Kage, H.: Sentinel-2 Data for Precision Agriculture?—A UAV-Based Assessment. Sensors. 21, 2861 (2021)

    Article  Google Scholar 

  27. Messina, G., Peña, J.M., Vizzari, M., Modica, G.: A Comparison of UAV and Satellites Multispectral Imagery in Monitoring Onion Crop. An Application in the ‘Cipolla Rossa di Tropea’ (Italy). Remote Sensing. 12, 3424 (2020). https://doi.org/10.3390/rs12203424

  28. Gozdowski, D., et al.: Comparison of winter wheat NDVI data derived from Landsat 8 and active optical sensor at field scale. Remote Sensing Applications: Society and Environment. 20, 100409 (2020)

    Article  Google Scholar 

  29. Veverka, D., Chatterjee, A., Carlson, M.: Comparisons of sensors to predict spring wheat grain yield and protein content. Agron. J. 113, 2091–2101 (2021)

    Article  Google Scholar 

  30. Meier, J., Mauser, W., Hank, T., Bach, H.: Assessments on the impact of high-resolution-sensor pixel sizes for common agricultural policy and smart farming services in European regions. Comput. Electron. Agric. 169, 105205 (2020)

    Article  Google Scholar 

  31. Vajsová, B., Fasbender, D., Wirnhardt, C., Lemajic, S., Devos, W.: Assessing spatial limits of Sentinel-2 data on arable crops in the context of checks by monitoring. Remote Sensing. 12, 2195 (2020)

    Article  Google Scholar 

  32. Zadoks, J.C., Chang, T.T., Konzak, C.F.: A decimal code for the growth stages of cereals. Weed Res. 14, 415–421 (1974)

    Article  Google Scholar 

  33. Galvão, L.S., Vitorello, Í., Filho, R.A.: Effects of Band Positioning and Bandwidth on NDVI Measurements of Tropical Savannas. Remote Sens. Environ. 67, 181–193 (1999). https://doi.org/10.1016/S0034-4257(98)00085-6

    Article  Google Scholar 

  34. Mahlein, A.-K., et al.: Development of spectral indices for detecting and identifying plant diseases. Remote Sens. Environ. 128, 21–30 (2013). https://doi.org/10.1016/j.rse.2012.09.019

    Article  Google Scholar 

  35. Bonfil, D.J., Michael, Y., Shiff, S., Lensky, I.M.: Optimizing Top Dressing Nitrogen Fertilization Using VENμS and Sentinel-2 L1 Data. Remote Sensing. 13, 3934 (2021). https://doi.org/10.3390/rs13193934

    Article  Google Scholar 

  36. Aranguren, M., Castellón, A., Aizpurua, A.: Crop Sensor-Based In-Season Nitrogen Management of Wheat with Manure Application. Remote Sensing. 11, 1094 (2019). https://doi.org/10.3390/rs11091094

    Article  Google Scholar 

  37. Lu, J., et al.: Developing a Proximal Active Canopy Sensor-based Precision Nitrogen Management Strategy for High-Yielding Rice. Remote Sensing. 12, 1440 (2020). https://doi.org/10.3390/rs12091440

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Farbo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Farbo, A., Meloni, R., Blandino, M., Sarvia, F., Reyneri, A., Borgogno-Mondino, E. (2022). Spectral Measures from Sentinel-2 Imagery vs Ground-Based Data from Rapidscan© Sensor: Performances on Winter Wheat. In: Borgogno-Mondino, E., Zamperlin, P. (eds) Geomatics for Green and Digital Transition. ASITA 2022. Communications in Computer and Information Science, vol 1651. Springer, Cham. https://doi.org/10.1007/978-3-031-17439-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17439-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17438-4

  • Online ISBN: 978-3-031-17439-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics