Abstract
Panther is a sponge-based lightweight authenticated encryption scheme published at Indocrypt 2021. Its round function is based on four Nonlinear Feedback Shift Registers (NFSRs). We show here that it is possible to fully recover the secret key of the construction by using a single known plaintext-ciphertext pair and with minimal computational resources. Furthermore, we show that in a known ciphertext setting an attacker is able with the knowledge of a single ciphertext to decrypt all plaintext blocks expect for the very first ones and can forge the tag with only one call and probability one. As we demonstrate, the problem of the design comes mainly from the low number of iterations of the round function during the absorption phase. All of our attacks have been implemented and validated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge functions. In: ECRYPT Hash Workshop 2007, May 2007. https://keccak.team/files/SpongeFunctions.pdf
Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Cryptographic sponge functions (2011). https://keccak.team/files/CSF-0.1.pdf
Bhargavi, K.V.L., Srinivasan, C., Lakshmy, K.V.: Panther: a sponge based lightweight authenticated encryption scheme. In: Adhikari, A., Küsters, R., Preneel, B. (eds.) INDOCRYPT 2021. LNCS, vol. 13143, pp. 49–70. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92518-5_3
Acknowledgements
The authors are partially supported by the French Agence Nationale de la Recherche through the SWAP project under Contract ANR-21-CE39-0012.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Boura, C., Boissier, R.H., Rotella, Y. (2022). Breaking Panther. In: Batina, L., Daemen, J. (eds) Progress in Cryptology - AFRICACRYPT 2022. AFRICACRYPT 2022. Lecture Notes in Computer Science, vol 13503. Springer, Cham. https://doi.org/10.1007/978-3-031-17433-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-17433-9_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-17432-2
Online ISBN: 978-3-031-17433-9
eBook Packages: Computer ScienceComputer Science (R0)