Is Free Energy an Organizational Principle in Spiking Neural Networks? | SpringerLink
Skip to main content

Is Free Energy an Organizational Principle in Spiking Neural Networks?

  • Conference paper
  • First Online:
From Animals to Animats 16 (SAB 2022)

Abstract

An open question in neuroscience is how the brain self-organizes. Despite significant progress in such understanding, this effort is still difficult to address in biological neural networks due to limitations in recording all the involved network components. It is possible however to approach this issue by examining how relatively small bio-inspired networks self-organize its neural activities under different states. From a computational standpoint, one can have access in this way to all variables and parameters of the network. Here we discuss how (non-variational) free energy varies during drastic changes in a spiking network through a sleep-like transition and in the absence of sensing. This non-variational free energy is defined as in its thermodynamic counterpart, where ‘energy’ refers to a quantity whose mean value is known or estimated from data sampling or model generated. We propose a novel view of how free energy is organized in a cortical-like neural network differently according to the synchronization of the network under external or internal fluctuations. Empirically testable hypotheses are presented in the context of non-sensory free energy modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. MacKay, D.J.: Information Theory, Inference and Learning Algorithms. Cambridge (2003)

    Google Scholar 

  2. Sims, A.: A problem of scope for the free energy principle as a theory of cognition. Philos. Psychol. 7, 967–980 (2016)

    Article  Google Scholar 

  3. Buckley, C.L., Kim, C.S., McGregor, S., Seth, A.K.: The free energy principle for action and perception: a mathematical review. J. Math. Psychol. 81, 55–79 (2017)

    Article  MathSciNet  Google Scholar 

  4. Friston, K., Kilner, J., Harrison, L.: A free energy principle for the brain. J. Physiol. Paris. 100(1–3), 70–87 (2006)

    Article  Google Scholar 

  5. Hohwy, J.: Prediction error minimization in the brain. The Routledge handbook of the computational mind, pp. 159–72 (2018)

    Google Scholar 

  6. Kiefer, A., Hohwy, J.: Representation in the prediction error minimization framework. In: The Routledge Companion to Philosophy of Psychology, pp. 384–409. Routledge (2019)

    Google Scholar 

  7. Callen, H.B.: Thermodynamics and an Introduction to Thermostatistics. Wiley (1991)

    Google Scholar 

  8. Pathria, R.K., Beale, P.D.: Statistical Mechanics. Academic Press (2011)

    Google Scholar 

  9. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620 (1957)

    Article  MathSciNet  Google Scholar 

  10. Mehta, P., Bukov, M., Wang, C.H., Day, A.G., Richardson, C., et al.: A high-bias, low-variance introduction to machine learning for physicists. Phys. Rep. 810, 1–24 (2019)

    Article  MathSciNet  Google Scholar 

  11. Perez Velazquez, J.L., Mateos, D.M., Guevara, E.R.: On a simple general principle of brain organization. Front. Neurosci. 13, 1106 (2019)

    Article  Google Scholar 

  12. Fernandez-Leon, J.A., Acosta, G.: A heuristic perspective on non-variational free energy modulation at the sleep-like edge. Biosystems 208, 104466 (2021)

    Article  Google Scholar 

  13. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Networks 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  14. Izhikevich, E.M.: Polychronization: computation with spikes. Neural Comput. 18(2), 245–282 (2006)

    Article  MathSciNet  Google Scholar 

  15. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational capabilities. Proc. Natl. Acad. Sci. USA 79, 2554 (1982)

    Article  MathSciNet  Google Scholar 

  16. Ashby, R.: Principles of the self-organising system. ECO 6, 102–126 (2004)

    Google Scholar 

  17. Kiverstein, J., Sims, M.: Is free-energy minimisation the mark of the cognitive? Biol. Philos. 36(2), 1–27 (2021). https://doi.org/10.1007/s10539-021-09788-0

    Article  Google Scholar 

  18. Davis, K.: Adaptive homeostasis. Mol Aspects Med. 49, 1–7 (2016)

    Article  Google Scholar 

  19. Steriade, M.: The corticothalamic system in sleep. Front Biosci. 8(4), d878–d899 (2003)

    Article  Google Scholar 

  20. Steriade M. Neuronal substrates of sleep and epilepsy. Cambridge University Press (2003)

    Google Scholar 

  21. Seth, A.: Being You: A New Science of Consciousness. Penguin, Dutton (2021)

    Google Scholar 

  22. Latchoumane, C.F., Jackson, L., Sendi, M.S., Tehrani, K.F., Mortensen, L.J., et al.: Chronic electrical stimulation promotes the excitability and plasticity of ESC-derived neurons following glutamate-induced inhibition in vitro. Sci. Rep. 8(1), 1–6 (2018)

    Article  Google Scholar 

  23. Hu, M., et al.: Electrical stimulation enhances neuronal cell activity mediated by Schwann cell derived exosomes. Sci. Rep. 9(1), 1–2 (2019)

    Article  Google Scholar 

  24. Vincent, J.L., Patel, G.H., Fox, M.D., Snyder, A.Z., Baker, J.T., et al.: Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447(7140), 83–86 (2007)

    Article  Google Scholar 

  25. Hobson, J.A., Friston, K.J.: Waking and dreaming consciousness: neurobiological and functional considerations. Prog. Neurobiol. 98(1), 82–98 (2012)

    Article  Google Scholar 

  26. Helmholtz, H.: Concerning the perceptions in general. Visual Perception: Essential Readings, pp. 24–44 [1866: In Treatise on physiological optics (J. Southall, Trans., 3rd ed., Vol. III). New York: Dover] (2021)

    Google Scholar 

  27. Evans, D.J.: A non-equilibrium free energy theorem for deterministic systems. Mol. Phys. 101(10), 1551–1554 (2003)

    Article  Google Scholar 

  28. Benjamin, L., Thomas, P.J., Fellous, J.M.: A renewed vision for biological cybernetics. Biol. Cybern. 114, 1–2 (2020)

    Google Scholar 

  29. Friston, K.J., Daunizeau, J., Kilner, J., Kiebel, S.J.: Action and behavior: a free-energy formulation. Biol. Cybern. 102(3), 227–260 (2010)

    Article  Google Scholar 

  30. Parr, T., Friston, K.J.: Generalised free energy and active inference. Biol. Cybern. 113(5), 495–513 (2019)

    Google Scholar 

  31. Gardner, R.J., et al.: Toroidal topology of population activity in grid cells. Nature 13, 1–6 (2022)

    Google Scholar 

  32. Friston, K.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11(2), 127–138 (2010)

    Article  Google Scholar 

  33. Chalmers, D.: Facing up to the problem of consciousness. Consc. Stud. 2, 200–219 (1995)

    Google Scholar 

  34. Solms, M.: The hard problem of consciousness and the free energy principle. Front. Psychol. 9, 2714 (2019)

    Article  Google Scholar 

  35. Solms, M., Friston, K.: How and why consciousness arises: some considerations from physics and physiology. J. Conscious. Stud. 25(5–6), 202–238 (2018)

    Google Scholar 

  36. Kim, B., et al.: Differential modulation of global and local neural oscillations in REM sleep by homeostatic sleep regulation. Proc. Natl. Acad. Sci. 114(9), E1727–E1736 (2017)

    Google Scholar 

  37. Friston, K., Levin, M., Sengupta, B., Pezzulo, G.: Knowing one’s place: a free-energy approach to pattern regulation. J. R. Soc. Interface 12(105), 20141383 (2015)

    Article  Google Scholar 

  38. Corcoran, A.W., Pezzulo, G., Hohwy, J.: From allostatic agents to counterfactual cognisers: active inference, biological regulation, and the origins of cognition. Biol. Philos. 35(3), 1–45 (2020). https://doi.org/10.1007/s10539-020-09746-2

    Article  Google Scholar 

  39. Dennett, D.: Darwin’s Dangerous Idea. Evolution and the Meaning of Life. Simon & Schuster, New York (1995)

    Google Scholar 

  40. Tononi, G., Cirelli, C.: Sleep function and synaptic homeostasis. Sleep Med. Rev. 10(1), 49–62 (2006)

    Article  Google Scholar 

  41. Tononi, G., Cirelli, C.: Perchance to prune. Sci. Am. 309(2), 34–39 (2013)

    Article  Google Scholar 

  42. Braun, A.R.: Regional cerebral blood flow throughout the sleep-wake cycle. An H2 (15) O PET study. Brain J. Neurol. 120(7), 1173–97 (1997)

    Google Scholar 

  43. Colombo, M., Wright, C.: First principles in the life sciences: the free-energy principle, organicism, and mechanism. Synthese 198(14), 3463–3488 (2018). https://doi.org/10.1007/s11229-018-01932-w

    Article  MathSciNet  Google Scholar 

  44. Wright, J.J., Bourke, P.D.: The growth of cognition: Free energy minimization and the embryogenesis of cortical computation. Phys. Life Rev. 36, 83–99 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose A. Fernandez-Leon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fernandez-Leon, J.A., Arlego, M., Acosta, G.G. (2022). Is Free Energy an Organizational Principle in Spiking Neural Networks?. In: Cañamero, L., Gaussier, P., Wilson, M., Boucenna, S., Cuperlier, N. (eds) From Animals to Animats 16. SAB 2022. Lecture Notes in Computer Science(), vol 13499. Springer, Cham. https://doi.org/10.1007/978-3-031-16770-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16770-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16769-0

  • Online ISBN: 978-3-031-16770-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics