A General-Purpose Method for Applying Explainable AI for Anomaly Detection | SpringerLink
Skip to main content

A General-Purpose Method for Applying Explainable AI for Anomaly Detection

  • Conference paper
  • First Online:
Foundations of Intelligent Systems (ISMIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13515))

Included in the following conference series:

  • 1270 Accesses

Abstract

The need for explainable AI (XAI) is well established but relatively little has been published outside of the supervised learning paradigm. This paper focuses on a principled approach to applying explainability and interpretability to the task of unsupervised anomaly detection. We argue that explainability is principally an algorithmic task and interpretability is principally a cognitive task, and draw on insights from the cognitive sciences to propose a general-purpose method for practical diagnosis using explained anomalies. We define Attribution Error, and demonstrate, using real-world labeled datasets, that our method based on Integrated Gradients (IG) yields significantly lower attribution errors than alternative methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Proportionality in this work is different from Proportionality defined in [35], since Proportionality in the latter refers to a condition under which the dimensional components of the distance between a baseline point and an observation is proportional to the attribution.

  2. 2.

    We apply equal weighting to each relevant dimension in \(\beta (x)\), because our technician labelers have found it impractical to assign relative importance weights/preference to the relevant dimensions.

References

  1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (xai). IEEE Access 6, 52138–52160 (2018)

    Article  Google Scholar 

  2. Aggarwal, C.C.: Outlier Analysis, 2nd edn. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47578-3

    Book  MATH  Google Scholar 

  3. Antwarg, L., Miller, R.M., Shapira, B., Rokach, L.: Explaining anomalies detected by autoencoders using shap (2020)

    Google Scholar 

  4. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), 1–46 (2015)

    Google Scholar 

  5. Binder, A., Montavon, G., Lapuschkin, S., Müller, K.-R., Samek, W.: Layer-wise relevance propagation for neural networks with local renormalization layers. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9887, pp. 63–71. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44781-0_8

    Chapter  MATH  Google Scholar 

  6. Broniatowski, D.: Psychological foundations of explainability and interpretability in artificial intelligence (2021–04-12 04:04:00 2021)

    Google Scholar 

  7. Carletti, M., Terzi, M., Susto, G.A.: Interpretable anomaly detection with diffi: Depth-based isolation forest feature importance (2020)

    Google Scholar 

  8. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3) (2009). https://doi.org/10.1145/1541880.1541882

  9. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learning (2017)

    Google Scholar 

  10. Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M.A., Kagal, L.: Explaining explanations: an approach to evaluating interpretability of machine learning. CoRR abs/1806.00069 (2018)

    Google Scholar 

  11. Kauffmann, J., Müller, K.R., Montavon, G.: Towards explaining anomalies: a deep Taylor decomposition of one-class models. Pattern Recogn. 101, 107198 (2020). https://doi.org/10.1016/j.patcog.2020.107198

    Article  Google Scholar 

  12. Lieto, A., Radicioni, D.P., Rho, V.: Dual PECCS: a cognitive system for conceptual representation and categorization. J. Exp. Theor. Artif. Intell. 29(2), 433–452 (2017)

    Article  Google Scholar 

  13. Lipton, Z.C.: The mythos of model interpretability. CoRR abs/1606.03490 (2016). http://arxiv.org/abs/1606.03490

  14. Liu, F.T., Ting, K.M., Zhou, Z.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422, December 2008. https://doi.org/10.1109/ICDM.2008.17

  15. Liznerski, P., Ruff, L., Vandermeulen, R.A., Franks, B.J., Kloft, M., Müller, K.R.: Explainable deep one-class classification (2021)

    Google Scholar 

  16. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)

    Google Scholar 

  17. Merrick, L., Taly, A.: The explanation game: explaining machine learning models with cooperative game theory. CoRR abs/1909.08128 (2019)

    Google Scholar 

  18. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artificial Intelligence 267 (2017). https://doi.org/10.1016/j.artint.2018.07.007

  19. Miller, T.: Contrastive explanation: a structural-model approach. Knowl. Eng. Rev. 36, e14 (2021). https://doi.org/10.1017/S0269888921000102

    Article  Google Scholar 

  20. Montavon, G., Bach, S., Binder, A., Samek, W., Müller, K.: Explaining nonlinear classification decisions with deep Taylor decomposition. CoRR abs/1512.02479 (2015)

    Google Scholar 

  21. Navarro, D.J.: On the interaction between exemplar-based concepts and a response scaling process. Math. Psychol. 51(2), 85–98 (2007)

    Article  MathSciNet  Google Scholar 

  22. Nosofsky, R.M.: Attention, similarity, and the identification-categorization relationship. J. Exp. Psychol. 115(1), 39–61 (1986)

    Article  Google Scholar 

  23. Ribeiro, M.T., Singh, S., Guestrin, C.: “why should I trust you?”: explaining the predictions of any classifier. CoRR abs/1602.04938 (2016)

    Google Scholar 

  24. Ricoeur, P.: Interpretation Theory: Discourse and the Surplus of Meaning. Texas Christian University Press, Fort Worth (1972)

    Google Scholar 

  25. Ruff, L., et al.: A unifying review of deep and shallow anomaly detection. CoRR abs/2009.11732 (2020)

    Google Scholar 

  26. Samek, W., Wiegand, T., Müller, K.: Explainable artificial intelligence: understanding, visualizing and interpreting deep learning models. CoRR abs/1708.08296 (2017)

    Google Scholar 

  27. Schölkopf, B., Platt, J.C., Shawe-Taylor, J.C., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001). https://doi.org/10.1162/089976601750264965

    Article  MATH  Google Scholar 

  28. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949)

    MATH  Google Scholar 

  29. Shepard, R.N.: Stimulus and response generalization: a stochastic model relating generalization to distance in psychological space. PsychometrikaR 22, 325–345 (1957)

    Article  MathSciNet  Google Scholar 

  30. Shepard, R.N.: Toward a universal law of generalization for psychological science. Science 237(4820), 1317–1323 (1987). https://doi.org/10.1126/science.3629243

    Article  MathSciNet  MATH  Google Scholar 

  31. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences (2017)

    Google Scholar 

  32. Sipple, J.: Interpretable, multidimensional, multimodal anomaly detection with negative sampling for detection of device failure. In: III, H.D., Singh, A. (eds.) Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 9016–9025. PMLR, 13–18 July 2020

    Google Scholar 

  33. Sipple, J., Youssef, A.: A general-purpose method for applying Explainable AI for anomaly detection (extended manuscript) (2022). https://arxiv.org/abs/2207.11564

  34. Sundararajan, M., Najmi, A.: The many Shapley values for model explanation. In: III, H.D., Singh, A. (eds.) Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 9269–9278. PMLR, 13–18 July 2020

    Google Scholar 

  35. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. CoRR abs/1703.01365 (2017)

    Google Scholar 

  36. Tax, D.M.J., Duin, R.P.W.: Uniform object generation for optimizing one-class classifiers. J. Mach. Learn. Res. 2, 155–173 (2002)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Klaus-Robert Müller and Ankur Taly for instructive and practical advice and for their detailed technical reviews, and the anonymous reviewers for identifying gaps and suggesting improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Sipple .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sipple, J., Youssef, A. (2022). A General-Purpose Method for Applying Explainable AI for Anomaly Detection. In: Ceci, M., Flesca, S., Masciari, E., Manco, G., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2022. Lecture Notes in Computer Science(), vol 13515. Springer, Cham. https://doi.org/10.1007/978-3-031-16564-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16564-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16563-4

  • Online ISBN: 978-3-031-16564-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics