Enforcing Connectivity of 3D Linear Structures Using Their 2D Projections | SpringerLink
Skip to main content

Enforcing Connectivity of 3D Linear Structures Using Their 2D Projections

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Many biological and medical tasks require the delineation of 3D curvilinear structures such as blood vessels and neurites from image volumes. This is typically done using neural networks trained by minimizing voxel-wise loss functions that do not capture the topological properties of these structures. As a result, the connectivity of the recovered structures is often wrong, which lessens their usefulness. In this paper, we propose to improve the 3D connectivity of our results by minimizing a sum of topology-aware losses on their 2D projections. This suffices to increase the accuracy and to reduce the annotation effort required to provide the required annotated training data.

D. Onerand and H. Osman—The two authors contributed equally to this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Breitenreicher, D., Sofka, M., Britzen, S., Zhou, S.K.: Hierarchical discriminative framework for detecting tubular structures in 3D images. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 328–339. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38868-2_28

    Chapter  Google Scholar 

  2. Briggman, K., Denk, W., Seung, S., Helmstaedter, M., Turaga, S.: Maximin affinity learning of image segmentation. In: Advances in Neural Information Processing Systems, pp. 1865–1873 (2009)

    Google Scholar 

  3. Bullitt, E., et al.: Vessel tortuosity and brain tumor malignancy: a blinded study. Acad. Radiol. 12(10), 1232–1240 (2005)

    Google Scholar 

  4. Byrne, N., Clough, J.R., Montana, G., King, A.P.: A persistent homology-based topological loss function for multi-class CNN segmentation of cardiac MRI. In: Puyol Anton, E., et al. (eds.) STACOM 2020. LNCS, vol. 12592, pp. 3–13. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68107-4_1

  5. Chen, S., Ma, K., Zheng, Y.: Med3D: transfer learning for 3D medical image analysis. arXiv preprint (2019)

    Google Scholar 

  6. Clough, J., Byrne, N., Oksuz, I., Zimmer, V.A., Schnabel, J.A., King, A.: A topological loss function for deep-learning based image segmentation using persistent homology. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  7. Edelsbrunner, H., Harer, J.: Persistent homology - a survey. Contemp. Math. 453, 257–282 (2008)

    Article  MathSciNet  Google Scholar 

  8. Van Etten, A., Lindenbaum, D., Bacastow, T.: Spacenet: A Remote Sensing Dataset and Challenge Series. arXiv preprint (2018)

    Google Scholar 

  9. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056195

  10. Funke, J., et al.: Large scale image segmentation with structured loss based deep learning for connectome reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1669–1680 (2018)

    Google Scholar 

  11. Ganin, Y., Lempitsky, V.: N4-fields: neural network nearest neighbor fields for image transforms. In: Asian Conference on Computer Vision, pp. 536–551 (2014)

    Google Scholar 

  12. Guo, Z., et al.: Deepcenterline: a multi-task fully convolutional network for centerline extraction. In: IPMI, pp. 441–453 (2019)

    Google Scholar 

  13. Hu, X., Li, F., Samaras, D., Chen, C.: Topology-preserving deep image segmentation. In: Advances in Neural Information Processing Systems, pp. 5658–5669 (2019)

    Google Scholar 

  14. Hu, X., Wang, Y., Fuxin, L., Samaras, D., Chen, C.: Topology-aware segmentation using discrete Morse theory. In: International Conference on Learning Representations (2021)

    Google Scholar 

  15. Huang, X., Zhang, L.: Road centreline extraction from high-resolution imagery based on multiscale structural features and support vector machines. Int. J. Rem. Sens. 30, 1977–1987 (2009)

    Article  MathSciNet  Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimisation. In: International Conference on Learning Representations (2015)

    Google Scholar 

  17. Koziński, M., Mosińska, A., Salzmann, M., Fua, P.: Learning to segment 3D linear structures using only 2D annotations. In: Conference on Medical Image Computing and Computer Assisted Intervention, pp. 283–291 (2018)

    Google Scholar 

  18. Koziński, M., Mosinska, A., Salzmann, M., Fua, P.: Tracing in 2D to reduce the annotation effort for 3D deep delineation of linear structures. Med. Image Anal. 60 (2020)

    Google Scholar 

  19. Law, M.W.K., Chung, A.C.S.: Three dimensional curvilinear structure detection using optimally oriented flux. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 368–382. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88693-8_27

  20. Maninis, K.K., Pont-Tuset, J., Arbeláez, P., Van Gool, L.: Deep retinal image understanding. In: Conference on Medical Image Computing and Computer Assisted Intervention, pp. 140–148 (2016)

    Google Scholar 

  21. Mnih, V., Hinton, G.E.: Learning to detect roads in high-resolution aerial images. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 210–223. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15567-3_16

  22. Mosińska, A., Kozinski, M., Fua, P.: Joint segmentation and path classification of curvilinear structures. IEEE Trans. Pattern Anal. Mach. Intell. 42(6), 1515–1521 (2020)

    Article  Google Scholar 

  23. Mosińska, A., Marquez-Neila, P., Kozinski, M., Fua, P.: Beyond the pixel-wise loss for topology-aware delineation. In: Conference on Computer Vision and Pattern Recognition, pp. 3136–3145 (2018)

    Google Scholar 

  24. Oner, D., Koziński, M., Citraro, L., Dadap, N.C., Konings, A.G., Fua, P.: Promoting connectivity of network-like structures by enforcing region separation. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  25. Peng, H., Zhou, Z., Meijering, E., Zhao, T., Ascoli, G.A., Hawrylycz, M.: Automatic tracing of ultra-volumes of neuronal images. Nat. Methods 14, 332–333 (2017)

    Google Scholar 

  26. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Conference on Medical Image Computing and Computer Assisted Intervention, pp. 234–241 (2015)

    Google Scholar 

  27. Shit, S., et al.: cldice - a novel topology-preserving loss function for tubular structure segmentation. In: CVPR, pp. 16560–16569. Computer Vision Foundation/IEEE (2021)

    Google Scholar 

  28. Sironi, A., Lepetit, V., Fua, P.: Multiscale centerline detection by learning a scale-space distance transform. In: Conference on Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  29. Turetken, E., Becker, C., Glowacki, P., Benmansour, F., Fua, P.: Detecting irregular curvilinear structures in gray scale and color imagery using multi-directional oriented flux. In: International Conference on Computer Vision, pp. 1553–1560 (2013)

    Google Scholar 

  30. Turetken, E., Benmansour, F., Andres, B., Glowacki, P., Pfister, H., Fua, P.: Reconstructing curvilinear networks using path classifiers and integer programming. IEEE Trans. Pattern Anal. Mach. Intell. 38(12), 2515–2530 (2016)

    Article  Google Scholar 

  31. Wegner, J.D., Montoya-Zegarra, J.A., Schindler, K.: A higher-order CRF model for road network extraction. In: Conference on Computer Vision and Pattern Recognition, pp. 1698–1705 (2013)

    Google Scholar 

  32. Wiedemann, C., Heipke, C., Mayer, H., Jamet, O.: Empirical evaluation of automatically extracted road axes. In: Empirical Evaluation Techniques in Computer Vision, pp. 172–187 (1998)

    Google Scholar 

  33. Wolterink, J., van Hamersvelt, R., Viergever, M., Leiner, T., Isgum, I.: Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier. Med.Image Anal. 51, 46–60 (2019)

    Article  Google Scholar 

  34. Wu, D., et al.: A learning based deformable template matching method for automatic rib centerline extraction and labeling in CT images. In: Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

Download references

Acknowledgements

DO received support from the Swiss National Science Foundation under Sinergia grant number 177237. MK was supported by the FWF Austrian Science Fund Lise Meitner grant no. M3374. The author’s version of the manuscript is available from arxiv.org.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doruk Oner .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 14262 KB)

Supplementary material 2 (pdf 110 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oner, D., Osman, H., Koziński, M., Fua, P. (2022). Enforcing Connectivity of 3D Linear Structures Using Their 2D Projections. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13435. Springer, Cham. https://doi.org/10.1007/978-3-031-16443-9_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16443-9_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16442-2

  • Online ISBN: 978-3-031-16443-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics