iSegFormer: Interactive Segmentation via Transformers with Application to 3D Knee MR Images | SpringerLink
Skip to main content

iSegFormer: Interactive Segmentation via Transformers with Application to 3D Knee MR Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13435))

Abstract

Interactive image segmentation has been widely applied to obtain high-quality voxel-level labels for medical images. The recent success of Transformers on various vision tasks has paved the road for developing Transformer-based interactive image segmentation approaches. However, these approaches remain unexplored and, in particular, have not been developed for 3D medical image segmentation. To fill this research gap, we investigate Transformer-based interactive image segmentation and its application to 3D medical images. This is a nontrivial task due to two main challenges: 1) limited memory for computationally inefficient Transformers and 2) limited labels for 3D medical images. To tackle the first challenge, we propose iSegFormer, a memory-efficient Transformer that combines a Swin Transformer with a lightweight multilayer perceptron (MLP) decoder. To address the second challenge, we pretrain iSegFormer on large amount of unlabeled datasets and then finetune it with only a limited number of segmented 2D slices. We further propagate the 2D segmentations obtained by iSegFormer to unsegmented slices in 3D images using a pre-existing segmentation propagation model pretrained on videos. We evaluate iSegFormer on the public OAI-ZIB dataset for interactive knee cartilage segmentation. Evaluation results show that iSegFormer outperforms its convolutional neural network (CNN) counterparts on interactive 2D knee cartilage segmentation, with competitive computational efficiency. When propagating the 2D interactive segmentations of 5 slices to other unprocessed slices within the same 3D volume, we achieve 82.2% Dice score for 3D knee cartilage segmentation. Code is available at https://github.com/uncbiag/iSegFormer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, R., Lei, T., Cui, R., Zhang, B., Meng, H., Nandi, A.K.: Medical image segmentation using deep learning: a survey. In: IET Image Processing, Jan 2022

    Google Scholar 

  2. Shen, D., Wu, G., Suk, H.-I.: Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017)

    Article  Google Scholar 

  3. Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J.N., Wu, Z., Ding, X.: Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation. Med. Image Anal. 63, 101693 (2020)

    Article  Google Scholar 

  4. Xu, N., Price, B., Cohen, S., Yang, J., Huang, T.S.: Deep interactive object selection. In: CVPR, pp. 373–381 (2016)

    Google Scholar 

  5. Xu, N., Price, B., Cohen, S., Yang, J., Huang, T.: Deep grabcut for object selection. arXiv preprint arXiv:1707.00243 (2017)

  6. Sofiiuk, K., Petrov, I.A., Konushin, A.: Reviving iterative training with mask guidance for interactive segmentation. arXiv preprint arXiv:2102.06583 (2021)

  7. Zhang, S., Liew, J.H., Wei, Y., Wei, S., Zhao, Y.: Interactive object segmentation with inside-outside guidance. In: CVPR, pp. 12234–12244 (2020)

    Google Scholar 

  8. Cohen, N., Shashua, A.: Inductive bias of deep convolutional networks through pooling geometry. arXiv preprint arXiv:1605.06743 (2016)

  9. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  10. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR, pp. 7794–7803 (2018)

    Google Scholar 

  11. Yuan, Y., et al.: Hrformer: high-resolution vision transformer for dense predict. Adv. Neural. Inf. Process. Syst. 34, 7281–7293 (2021)

    Google Scholar 

  12. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer: simple and efficient design for semantic segmentation with transformers. Adv. Neural. Inf. Process. Syst. 34, 12077–12090 (2021)

    Google Scholar 

  13. Cao, H.: Swin-unet: Unet-like pure transformer for medical image segmentation. arXiv preprint arXiv:2105.05537 (2021)

  14. Cheng, H.K., Tai, Y.-W., Tang, C.-K.: Rethinking space-time networks with improved memory coverage for efficient video object segmentation. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  15. Diaz-Pinto, A., et al.: Monai label: a framework for ai-assisted interactive labeling of 3d medical images. arXiv preprint arXiv:2203.12362 (2022)

  16. Chao, C.-H., Cheng, H.-T., Ho, T.-Y., Lu, L., Sun, M.: Interactive radiotherapy target delineation with 3d-fused context propagation. arXiv preprint arXiv:2012.06873 (2020)

  17. Sakinis, T.: Interactive segmentation of medical images through fully convolutional neural networks. arXiv preprint arXiv:1903.08205 (2019)

  18. Luo, X., et al.: Mideepseg: Minimally interactive segmentation of unseen objects from medical images using deep learning. Med. Image Anal. 72, 102102 (2021)

    Google Scholar 

  19. Chen, J.: Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  20. Liu, Q., et al.: Multi-class gradient harmonized dice loss with application to knee MR image segmentation,. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 86–94. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_10

    Chapter  Google Scholar 

  21. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  22. Wang, W., et al.: Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. In: ICCV, pp. 568–578 (2021)

    Google Scholar 

  23. Liu, Z.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV, pp. 10012–10022 (2021)

    Google Scholar 

  24. Zhang, Y., Liu, H., Hu, Q.: TransFuse: fusing transformers and CNNs for medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 14–24. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_2

    Chapter  Google Scholar 

  25. Gao, Y., Zhou, M., Metaxas, D.N.: UTNet: a hybrid transformer architecture for medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 61–71. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_6

    Chapter  Google Scholar 

  26. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  27. Oh, S.W., Lee, J.-Y., Xu, N., Kim, S.J.: Fast user-guided video object segmentation by interaction-and-propagation networks. In: CVPR, pp. 5247–5256 (2019)

    Google Scholar 

  28. Cheng, H.K., Tai, Y.-W., Tang, C.-K.: Modular interactive video object segmentation: Interaction-to-mask, propagation and difference-aware fusion. In: CVPR, pp. 5559–5568 (2021)

    Google Scholar 

  29. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR, pp. 248–255. IEEE (2009)

    Google Scholar 

  30. Benenson, R., Popov, S., Ferrari, V.: Large-scale interactive object segmentation with human annotators. In: CVPR, pp. 11700–11709 (2019)

    Google Scholar 

  31. Sofiiuk, K., Barinova, O., Konushin, A.: Adaptis: adaptive instance selection network. In: ICCV, pp. 7355–7363 (2019)

    Google Scholar 

  32. Ambellan, F., Tack, A., Ehlke, M., Zachow, S.: Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the osteoarthritis initiative. Med. Image Anal. 52, 109–118 (2019)

    Article  Google Scholar 

  33. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  34. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

Download references

Acknowledgement

Research reported in this publication was supported by the National Institutes of Health (NIH) under award number NIH 1R01AR072013. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. Data related to knee osteoarthritis used in the preparation of this manuscript were obtained from the controlled access datasets distributed from the Osteoarthritis Initiative (OAI), a data repository housed within the NIMH Data Archive (NDA). OAI is a collaborative informatics system created by the National Institute of Mental Health and the National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS) to provide a worldwide resource to quicken the pace of biomarker identification, scientific investigation and OA drug development. Dataset identifier(s): NIMH Data Archive Collection ID: 2343.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Niethammer .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 67 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Q., Xu, Z., Jiao, Y., Niethammer, M. (2022). iSegFormer: Interactive Segmentation via Transformers with Application to 3D Knee MR Images. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13435. Springer, Cham. https://doi.org/10.1007/978-3-031-16443-9_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16443-9_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16442-2

  • Online ISBN: 978-3-031-16443-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics