Abstract
3D mitochondria segmentation in electron microscopy (EM) images has achieved significant progress. However, existing learning-based methods with high performance typically rely on extensive training data with high-quality manual annotations, which is time-consuming and labor-intensive. To address this challenge, we propose a novel data augmentation method tailored for 3D mitochondria segmentation. First, we train a Mask2EM network for learning the mapping from the ground-truth instance masks to real 3D EM images in an adversarial manner. Based on the Mask2EM network, we can obtain synthetic 3D EM images from arbitrary instance masks to form a sufficient amount of paired training data for segmentation. Second, we design a 3D mask layout generator to generate diverse instance layouts by rearranging volumetric instance masks according to mitochondrial distance distribution. Experiments demonstrate that, as a plug-and-play module, the proposed method boosts existing 3D mitochondria segmentation networks to achieve state-of-the-art performance. Especially, the proposed method brings significant improvements when training data is extremely limited. Code will be available at: https://github.com/qic999/MRDA_MitoSeg.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bailo, O., Ham, D., Min Shin, Y.: Red blood cell image generation for data augmentation using conditional generative adversarial networks. In: CVPRW (2019)
Calimeri, F., Marzullo, A., Stamile, C., Terracina, G.: Biomedical data augmentation using generative adversarial neural networks. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10614, pp. 626–634. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68612-7_71
Chen, C., et al.: Realistic adversarial data augmentation for MR image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 667–677. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_65
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
Franco-Barranco, D., Muñoz-Barrutia, A., Arganda-Carreras, I.: Stable deep neural network architectures for mitochondria segmentation on electron microscopy volumes. Neuroinformatics, pp. 1–14 (2021)
Fréville, A.: The multidimensional 0–1 knapsack problem: an overview. Eur. J. Oper. Res. 155(1), 1–21 (2004)
Funke, J., et al.: Large scale image segmentation with structured loss based deep learning for connectome reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1669–1680 (2018)
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR, pp. 1125–1134 (2017)
Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9404–9413 (2019)
Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A.: A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 36(7), 1550–1560 (2017)
Lee, K., Zung, J., Li, P., Jain, V., Seung, H.S.: Superhuman accuracy on the SNEMI3D connectomics challenge. arXiv preprint arXiv:1706.00120 (2017)
Li, M., Chen, C., Liu, X., Huang, W., Zhang, Y., Xiong, Z.: Advanced deep networks for 3D mitochondria instance segmentation. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–5. IEEE (2022)
Li, Z., Chen, X., Zhao, J., Xiong, Z.: Contrastive learning for mitochondria segmentation. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3496–3500. IEEE (2021)
Lin, Z., Wei, D., Lichtman, J., Pfister, H.: Pytorch connectomics: a scalable and flexible segmentation framework for EM connectomics. arXiv preprint arXiv:2112.05754 (2021)
Lucchi, A., Li, Y., Fua, P.: Learning for structured prediction using approximate subgradient descent with working sets. In: CVPR, pp. 1987–1994 (2013)
Lucchi, A., Smith, K., Achanta, R., Knott, G., Fua, P.: Supervoxel-based segmentation of mitochondria in EM image stacks with learned shape features. IEEE Trans. Med. Imaging 31(2), 474–486 (2011)
Luo, Z., Wang, Y., Liu, S., Peng, J.: Hierarchical encoder-decoder with soft label-decomposition for mitochondria segmentation in EM images. Front. Neurosci. 15 (2021)
McBride, H.M., Neuspiel, M., Wasiak, S.: Mitochondria: more than just a powerhouse. Curr. Biol. 16(14), R551–R560 (2006)
Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)
Naghizadeh, A., Xu, H., Mohamed, M., Metaxas, D.N., Liu, D.: Semantic aware data augmentation for cell nuclei microscopical images with artificial neural networks. In: ICCV, pp. 3952–3961 (2021)
Nikolaos, A.: Deep learning in medical image analysis: a comparative analysis of multi-modal brain-MRI segmentation with 3D deep neural networks. Master’s thesis, University of Patras (2019). https://github.com/black0017/MedicalZooPytorch
Nunnari, J., Suomalainen, A.: Mitochondria: in sickness and in health. Cell 148(6), 1145–1159 (2012)
Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts. Distill 1(10), e3 (2016)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Shin, H.-C., et al.: Medical image synthesis for data augmentation and anonymization using generative adversarial networks. In: Gooya, A., Goksel, O., Oguz, I., Burgos, N. (eds.) SASHIMI 2018. LNCS, vol. 11037, pp. 1–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00536-8_1
Wei, D., et al.: MitoEM dataset: large-scale 3D mitochondria instance segmentation from EM images. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 66–76. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_7
Wu, S., Chen, C., Xiong, Z., Chen, X., Sun, X.: Uncertainty-aware label rectification for domain adaptive mitochondria segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 191–200. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_18
Xiao, C., et al.: Automatic mitochondria segmentation for Em data using a 3D supervised convolutional network. Front. Neuroanat. 12, 92 (2018)
Yuan, Z., Ma, X., Yi, J., Luo, Z., Peng, J.: Hive-net: centerline-aware hierarchical view-ensemble convolutional network for mitochondria segmentation in Em images. Comput. Methods Programs Biomed. 200, 105925 (2021)
Zhang, Z., Yang, L., Zheng, Y.: Translating and segmenting multimodal medical volumes with cycle-and shape-consistency generative adversarial network. In: CVPR, pp. 9242–9251 (2018)
Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1
Acknowledgement
This work was supported in part by the National Key R &D Program of China under Grant 2017YFA0700800, the National Natural Science Foundation of China under Grant 62021001, and the University Synergy Innovation Program of Anhui Province No. GXXT-2019-025.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, Q., Li, M., Li, J., Hu, B., Xiong, Z. (2022). Mask Rearranging Data Augmentation for 3D Mitochondria Segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13434. Springer, Cham. https://doi.org/10.1007/978-3-031-16440-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-16440-8_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16439-2
Online ISBN: 978-3-031-16440-8
eBook Packages: Computer ScienceComputer Science (R0)