Mask Rearranging Data Augmentation for 3D Mitochondria Segmentation | SpringerLink
Skip to main content

Mask Rearranging Data Augmentation for 3D Mitochondria Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13434))

Abstract

3D mitochondria segmentation in electron microscopy (EM) images has achieved significant progress. However, existing learning-based methods with high performance typically rely on extensive training data with high-quality manual annotations, which is time-consuming and labor-intensive. To address this challenge, we propose a novel data augmentation method tailored for 3D mitochondria segmentation. First, we train a Mask2EM network for learning the mapping from the ground-truth instance masks to real 3D EM images in an adversarial manner. Based on the Mask2EM network, we can obtain synthetic 3D EM images from arbitrary instance masks to form a sufficient amount of paired training data for segmentation. Second, we design a 3D mask layout generator to generate diverse instance layouts by rearranging volumetric instance masks according to mitochondrial distance distribution. Experiments demonstrate that, as a plug-and-play module, the proposed method boosts existing 3D mitochondria segmentation networks to achieve state-of-the-art performance. Especially, the proposed method brings significant improvements when training data is extremely limited. Code will be available at: https://github.com/qic999/MRDA_MitoSeg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6291
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bailo, O., Ham, D., Min Shin, Y.: Red blood cell image generation for data augmentation using conditional generative adversarial networks. In: CVPRW (2019)

    Google Scholar 

  2. Calimeri, F., Marzullo, A., Stamile, C., Terracina, G.: Biomedical data augmentation using generative adversarial neural networks. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10614, pp. 626–634. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68612-7_71

    Chapter  Google Scholar 

  3. Chen, C., et al.: Realistic adversarial data augmentation for MR image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 667–677. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_65

    Chapter  Google Scholar 

  4. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  5. Franco-Barranco, D., Muñoz-Barrutia, A., Arganda-Carreras, I.: Stable deep neural network architectures for mitochondria segmentation on electron microscopy volumes. Neuroinformatics, pp. 1–14 (2021)

    Google Scholar 

  6. Fréville, A.: The multidimensional 0–1 knapsack problem: an overview. Eur. J. Oper. Res. 155(1), 1–21 (2004)

    Article  MathSciNet  Google Scholar 

  7. Funke, J., et al.: Large scale image segmentation with structured loss based deep learning for connectome reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1669–1680 (2018)

    Article  Google Scholar 

  8. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  9. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR, pp. 1125–1134 (2017)

    Google Scholar 

  10. Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9404–9413 (2019)

    Google Scholar 

  11. Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A.: A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 36(7), 1550–1560 (2017)

    Article  Google Scholar 

  12. Lee, K., Zung, J., Li, P., Jain, V., Seung, H.S.: Superhuman accuracy on the SNEMI3D connectomics challenge. arXiv preprint arXiv:1706.00120 (2017)

  13. Li, M., Chen, C., Liu, X., Huang, W., Zhang, Y., Xiong, Z.: Advanced deep networks for 3D mitochondria instance segmentation. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–5. IEEE (2022)

    Google Scholar 

  14. Li, Z., Chen, X., Zhao, J., Xiong, Z.: Contrastive learning for mitochondria segmentation. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3496–3500. IEEE (2021)

    Google Scholar 

  15. Lin, Z., Wei, D., Lichtman, J., Pfister, H.: Pytorch connectomics: a scalable and flexible segmentation framework for EM connectomics. arXiv preprint arXiv:2112.05754 (2021)

  16. Lucchi, A., Li, Y., Fua, P.: Learning for structured prediction using approximate subgradient descent with working sets. In: CVPR, pp. 1987–1994 (2013)

    Google Scholar 

  17. Lucchi, A., Smith, K., Achanta, R., Knott, G., Fua, P.: Supervoxel-based segmentation of mitochondria in EM image stacks with learned shape features. IEEE Trans. Med. Imaging 31(2), 474–486 (2011)

    Article  Google Scholar 

  18. Luo, Z., Wang, Y., Liu, S., Peng, J.: Hierarchical encoder-decoder with soft label-decomposition for mitochondria segmentation in EM images. Front. Neurosci. 15 (2021)

    Google Scholar 

  19. McBride, H.M., Neuspiel, M., Wasiak, S.: Mitochondria: more than just a powerhouse. Curr. Biol. 16(14), R551–R560 (2006)

    Article  Google Scholar 

  20. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  21. Naghizadeh, A., Xu, H., Mohamed, M., Metaxas, D.N., Liu, D.: Semantic aware data augmentation for cell nuclei microscopical images with artificial neural networks. In: ICCV, pp. 3952–3961 (2021)

    Google Scholar 

  22. Nikolaos, A.: Deep learning in medical image analysis: a comparative analysis of multi-modal brain-MRI segmentation with 3D deep neural networks. Master’s thesis, University of Patras (2019). https://github.com/black0017/MedicalZooPytorch

  23. Nunnari, J., Suomalainen, A.: Mitochondria: in sickness and in health. Cell 148(6), 1145–1159 (2012)

    Article  Google Scholar 

  24. Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts. Distill 1(10), e3 (2016)

    Article  Google Scholar 

  25. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  26. Shin, H.-C., et al.: Medical image synthesis for data augmentation and anonymization using generative adversarial networks. In: Gooya, A., Goksel, O., Oguz, I., Burgos, N. (eds.) SASHIMI 2018. LNCS, vol. 11037, pp. 1–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00536-8_1

    Chapter  Google Scholar 

  27. Wei, D., et al.: MitoEM dataset: large-scale 3D mitochondria instance segmentation from EM images. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 66–76. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_7

    Chapter  Google Scholar 

  28. Wu, S., Chen, C., Xiong, Z., Chen, X., Sun, X.: Uncertainty-aware label rectification for domain adaptive mitochondria segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 191–200. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_18

    Chapter  Google Scholar 

  29. Xiao, C., et al.: Automatic mitochondria segmentation for Em data using a 3D supervised convolutional network. Front. Neuroanat. 12, 92 (2018)

    Article  Google Scholar 

  30. Yuan, Z., Ma, X., Yi, J., Luo, Z., Peng, J.: Hive-net: centerline-aware hierarchical view-ensemble convolutional network for mitochondria segmentation in Em images. Comput. Methods Programs Biomed. 200, 105925 (2021)

    Article  Google Scholar 

  31. Zhang, Z., Yang, L., Zheng, Y.: Translating and segmenting multimodal medical volumes with cycle-and shape-consistency generative adversarial network. In: CVPR, pp. 9242–9251 (2018)

    Google Scholar 

  32. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Key R &D Program of China under Grant 2017YFA0700800, the National Natural Science Foundation of China under Grant 62021001, and the University Synergy Innovation Program of Anhui Province No. GXXT-2019-025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Xiong .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2625 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Q., Li, M., Li, J., Hu, B., Xiong, Z. (2022). Mask Rearranging Data Augmentation for 3D Mitochondria Segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13434. Springer, Cham. https://doi.org/10.1007/978-3-031-16440-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16440-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16439-2

  • Online ISBN: 978-3-031-16440-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics