Abstract
Ejection fraction (EF) is a key indicator of cardiac function, allowing identification of patients prone to heart dysfunctions such as heart failure. EF is estimated from cardiac ultrasound videos known as echocardiograms (echo) by manually tracing the left ventricle and estimating its volume on certain frames. These estimations exhibit high inter-observer variability due to the manual process and varying video quality. Such sources of inaccuracy and the need for rapid assessment necessitate reliable and explainable machine learning techniques. In this work, we introduce EchoGNN, a model based on graph neural networks (GNNs) to estimate EF from echo videos. Our model first infers a latent echo-graph from the frames of one or multiple echo cine series. It then estimates weights over nodes and edges of this graph, indicating the importance of individual frames that aid EF estimation. A GNN regressor uses this weighted graph to predict EF. We show, qualitatively and quantitatively, that the learned graph weights provide explainability through identification of critical frames for EF estimation, which can be used to determine when human intervention is required. On EchoNet-Dynamic public EF dataset, EchoGNN achieves EF prediction performance that is on par with state of the art and provides explainability, which is crucial given the high inter-observer variability inherent in this task. Our source code is publicly available at: https://github.com/MasoudMo/echognn.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amaral, C., Ralston, D., Becker, T.: Prehospital point-of-care ultrasound: a transformative technology. SAGE Open Med. 8, 2050312120932706 (2020)
Bamira, D., Picard, M.: Imaging: echocardiology-assessment of cardiac structure and function. In: Vasan, R.S., Sawyer, D.B. (eds.) Encyclopedia of Cardiovascular Research and Medicine, pp. 35–54. Elsevier, Oxford (2018)
Carroll, M.: Ejection fraction: Normal range, low range, and treatment (2021). https://www.healthline.com/health/ejection-fraction
Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). arXiv: Learning (2016)
Ferraioli, D., Santoro, G., Bellino, M., Citro, R.: Ventricular septal defect complicating inferior acute myocardial infarction: a case of percutaneous closure. J. Cardiovas. Echogr. 29(1), 17–19 (2019)
Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)
Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. CoRR abs/1704.01212 (2017)
Hou, B.: ResNetAE (2019). https://github.com/farrell236/ResNetAE
Huang, H., et al.: Accuracy of left ventricular ejection fraction by contemporary multiple gated acquisition scanning in patients with cancer: comparison with cardiovascular magnetic resonance. J. Cardiovas. Magn. Reson. 19(1), 34 (2017)
Jafari, M.H., Woudenberg, N.V., Luong, C., Abolmaesumi, P., Tsang, T.: Deep Bayesian image segmentation for a more robust ejection fraction estimation. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 1264–1268 (2021)
Kalogeropoulos, A.P., et al.: Characteristics and outcomes of adult outpatients with heart failure and improved or recovered ejection fraction. JAMA Cardiol. 1(5), 510–518 (2016)
Kazemi Esfeh, M.M., Luong, C., Behnami, D., Tsang, T., Abolmaesumi, P.: A deep Bayesian video analysis framework: towards a more robust estimation of ejection fraction. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 582–590. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_56
Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2014)
Kipf, T., Fetaya, E., Wang, K.C., Welling, M., Zemel, R.: Neural relational inference for interacting systems. In: Proceedings of the 35th International Conference on Machine Learning (2018)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)
Lang, R.M., et al.: Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European association of cardiovascular imaging. J. Am. Soc. Echocardiogr. 28(1), 1-39.e14 (2015)
Loehr, L., Rosamond, W., Chang, P., Folsom, A., Chambless, L.: Heart failure incidence and survival (from the atherosclerosis risk in communities study). Am. J. Cardiol. 101(7), 1016–1022 (2008)
Ouyang, D., et al.: Video-based AI for beat-to-beat assessment of cardiac function. Nature 580(7802), 252–256 (2020)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019)
Patil, V., Patil, H.: Isolated non-compaction cardiomyopathy presented with ventricular tachycardia. Heart views 12(2), 74–78 (2011)
Reynaud, H., Vlontzos, A., Hou, B., Beqiri, A., Leeson, P., Kainz, Bernhard: Ultrasound video transformers for cardiac ejection fraction estimation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 495–505. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_48
Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Networks 20(1), 61–80 (2008)
Smistad, E., et al.: Real-time automatic ejection fraction and foreshortening detection using deep learning. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67(12), 2595–2604 (2020)
Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. CoRR abs/1711.11248 (2017)
Vaswani, A., et al.: Attention is all you need. CoRR abs/1706.03762 (2017)
Acknowledgements
This research was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Institutes of Health Research (CIHR) and computational resources provided by Advanced Research Computing at the University of British Columbia.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mokhtari, M., Tsang, T., Abolmaesumi, P., Liao, R. (2022). EchoGNN: Explainable Ejection Fraction Estimation with Graph Neural Networks. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13434. Springer, Cham. https://doi.org/10.1007/978-3-031-16440-8_35
Download citation
DOI: https://doi.org/10.1007/978-3-031-16440-8_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16439-2
Online ISBN: 978-3-031-16440-8
eBook Packages: Computer ScienceComputer Science (R0)