EchoGNN: Explainable Ejection Fraction Estimation with Graph Neural Networks | SpringerLink
Skip to main content

EchoGNN: Explainable Ejection Fraction Estimation with Graph Neural Networks

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Ejection fraction (EF) is a key indicator of cardiac function, allowing identification of patients prone to heart dysfunctions such as heart failure. EF is estimated from cardiac ultrasound videos known as echocardiograms (echo) by manually tracing the left ventricle and estimating its volume on certain frames. These estimations exhibit high inter-observer variability due to the manual process and varying video quality. Such sources of inaccuracy and the need for rapid assessment necessitate reliable and explainable machine learning techniques. In this work, we introduce EchoGNN, a model based on graph neural networks (GNNs) to estimate EF from echo videos. Our model first infers a latent echo-graph from the frames of one or multiple echo cine series. It then estimates weights over nodes and edges of this graph, indicating the importance of individual frames that aid EF estimation. A GNN regressor uses this weighted graph to predict EF. We show, qualitatively and quantitatively, that the learned graph weights provide explainability through identification of critical frames for EF estimation, which can be used to determine when human intervention is required. On EchoNet-Dynamic public EF dataset, EchoGNN achieves EF prediction performance that is on par with state of the art and provides explainability, which is crucial given the high inter-observer variability inherent in this task. Our source code is publicly available at: https://github.com/MasoudMo/echognn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6291
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amaral, C., Ralston, D., Becker, T.: Prehospital point-of-care ultrasound: a transformative technology. SAGE Open Med. 8, 2050312120932706 (2020)

    Google Scholar 

  2. Bamira, D., Picard, M.: Imaging: echocardiology-assessment of cardiac structure and function. In: Vasan, R.S., Sawyer, D.B. (eds.) Encyclopedia of Cardiovascular Research and Medicine, pp. 35–54. Elsevier, Oxford (2018)

    Chapter  Google Scholar 

  3. Carroll, M.: Ejection fraction: Normal range, low range, and treatment (2021). https://www.healthline.com/health/ejection-fraction

  4. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). arXiv: Learning (2016)

  5. Ferraioli, D., Santoro, G., Bellino, M., Citro, R.: Ventricular septal defect complicating inferior acute myocardial infarction: a case of percutaneous closure. J. Cardiovas. Echogr. 29(1), 17–19 (2019)

    Google Scholar 

  6. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

    Google Scholar 

  7. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. CoRR abs/1704.01212 (2017)

    Google Scholar 

  8. Hou, B.: ResNetAE (2019). https://github.com/farrell236/ResNetAE

  9. Huang, H., et al.: Accuracy of left ventricular ejection fraction by contemporary multiple gated acquisition scanning in patients with cancer: comparison with cardiovascular magnetic resonance. J. Cardiovas. Magn. Reson. 19(1), 34 (2017)

    Google Scholar 

  10. Jafari, M.H., Woudenberg, N.V., Luong, C., Abolmaesumi, P., Tsang, T.: Deep Bayesian image segmentation for a more robust ejection fraction estimation. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 1264–1268 (2021)

    Google Scholar 

  11. Kalogeropoulos, A.P., et al.: Characteristics and outcomes of adult outpatients with heart failure and improved or recovered ejection fraction. JAMA Cardiol. 1(5), 510–518 (2016)

    Google Scholar 

  12. Kazemi Esfeh, M.M., Luong, C., Behnami, D., Tsang, T., Abolmaesumi, P.: A deep Bayesian video analysis framework: towards a more robust estimation of ejection fraction. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 582–590. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_56

    Chapter  Google Scholar 

  13. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2014)

    Google Scholar 

  14. Kipf, T., Fetaya, E., Wang, K.C., Welling, M., Zemel, R.: Neural relational inference for interacting systems. In: Proceedings of the 35th International Conference on Machine Learning (2018)

    Google Scholar 

  15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  16. Lang, R.M., et al.: Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European association of cardiovascular imaging. J. Am. Soc. Echocardiogr. 28(1), 1-39.e14 (2015)

    Article  Google Scholar 

  17. Loehr, L., Rosamond, W., Chang, P., Folsom, A., Chambless, L.: Heart failure incidence and survival (from the atherosclerosis risk in communities study). Am. J. Cardiol. 101(7), 1016–1022 (2008)

    Google Scholar 

  18. Ouyang, D., et al.: Video-based AI for beat-to-beat assessment of cardiac function. Nature 580(7802), 252–256 (2020)

    Google Scholar 

  19. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019)

    Google Scholar 

  20. Patil, V., Patil, H.: Isolated non-compaction cardiomyopathy presented with ventricular tachycardia. Heart views 12(2), 74–78 (2011)

    Google Scholar 

  21. Reynaud, H., Vlontzos, A., Hou, B., Beqiri, A., Leeson, P., Kainz, Bernhard: Ultrasound video transformers for cardiac ejection fraction estimation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 495–505. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_48

    Chapter  Google Scholar 

  22. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Networks 20(1), 61–80 (2008)

    Article  Google Scholar 

  23. Smistad, E., et al.: Real-time automatic ejection fraction and foreshortening detection using deep learning. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67(12), 2595–2604 (2020)

    Article  Google Scholar 

  24. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. CoRR abs/1711.11248 (2017)

    Google Scholar 

  25. Vaswani, A., et al.: Attention is all you need. CoRR abs/1706.03762 (2017)

    Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Institutes of Health Research (CIHR) and computational resources provided by Advanced Research Computing at the University of British Columbia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Purang Abolmaesumi or Renjie Liao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 491 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mokhtari, M., Tsang, T., Abolmaesumi, P., Liao, R. (2022). EchoGNN: Explainable Ejection Fraction Estimation with Graph Neural Networks. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13434. Springer, Cham. https://doi.org/10.1007/978-3-031-16440-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16440-8_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16439-2

  • Online ISBN: 978-3-031-16440-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics