Context-Aware Transformers for Spinal Cancer Detection and Radiological Grading | SpringerLink
Skip to main content

Context-Aware Transformers for Spinal Cancer Detection and Radiological Grading

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13433))

  • 6973 Accesses

Abstract

This paper proposes a novel transformer-based model architecture for medical imaging problems involving analysis of vertebrae. It considers two applications of such models in MR images: (a) detection of spinal metastases and the related conditions of vertebral fractures and metastatic cord compression, (b) radiological grading of common degenerative changes in intervertebral discs. Our contributions are as follows: (i) We propose a Spinal Context Transformer (SCT), a deep-learning architecture suited for the analysis of repeated anatomical structures in medical imaging such as vertebral bodies (VBs). Unlike previous related methods, SCT considers all VBs as viewed in all available image modalities together, making predictions for each based on context from the rest of the spinal column and all available imaging modalities. (ii) We apply the architecture to a novel and important task – detecting spinal metastases and the related conditions of cord compression and vertebral fractures/collapse from multi-series spinal MR scans. This is done using annotations extracted from free-text radiological reports as opposed to bespoke annotation. However, the resulting model shows strong agreement with vertebral-level bespoke radiologist annotations on the test set. (iii) We also apply SCT to an existing problem – radiological grading of inter-vertebral discs (IVDs) in lumbar MR scans for common degenerative changes. We show that by considering the context of vertebral bodies in the image, SCT improves the accuracy for several gradings compared to previously published models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bain, M., Nagrani, A., Varol, G., Zisserman, A.: Frozen in time: a joint video and image encoder for end-to-end retrieval. In: IEEE International Conference on Computer Vision (2021)

    Google Scholar 

  2. Burns, J.E., Yao, J., Wiese, T.S., Muñoz, H.E., Jones, E.C., Summers, R.M.: Automated detection of sclerotic metastases in the thoracolumbar spine at CT. Radiology 268(1), 69–78 (2013)

    Article  Google Scholar 

  3. Cai, Y., Osman, S., Sharma, M., Landis, M., Li, S.: Multi-modality vertebra recognition in arbitrary views using 3D deformable hierarchical model. IEEE Trans. Med. Imaging 34(8), 1676–1693 (2015)

    Article  Google Scholar 

  4. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  5. Casey, A., et al.: A systematic review of natural language processing applied to radiology reports. BMC Med. Inf. Decis. Making 21(1), 1–18 (2021)

    Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Proceedings of CVPR (2009)

    Google Scholar 

  7. Fisher, C.G., et al.: A novel classification system for spinal instability in neoplastic disease: an evidence-based approach and expert consensus from the spine oncology study group. Spine 35(22), E1221–E1229 (2010)

    Article  Google Scholar 

  8. Forsberg, D., Sjöblom, E., Sunshine, J.L.: Detection and labeling of vertebrae in MR images using deep learning with clinical annotations as training data. J. Digit. Imaging 30(4), 406–412 (2017)

    Article  Google Scholar 

  9. Gabeur, V., Sun, C., Alahari, K., Schmid, C.: Multi-modal transformer for video retrieval. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 214–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_13

    Chapter  Google Scholar 

  10. Glocker, B., Feulner, J., Criminisi, A., Haynor, D.R., Konukoglu, E.: Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 590–598. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33454-2_73

    Chapter  Google Scholar 

  11. Glocker, B., Zikic, D., Konukoglu, E., Haynor, D.R., Criminisi, A.: Vertebrae localization in pathological spine CT via dense classification from sparse annotations. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 262–270. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_33

    Chapter  Google Scholar 

  12. Hammon, M., et al.: Automatic detection of lytic and blastic thoracolumbar spine metastases on computed tomography. Eur. Radiol. 23(7), 1862–1870 (2013)

    Article  Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of CVPR (2016)

    Google Scholar 

  14. Jamaludin, A., Kadir, T., Zisserman, A.: Self-supervised learning for spinal MRIs. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 294–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_34

    Chapter  Google Scholar 

  15. Jamaludin, A., Kadir, T., Zisserman, A.: SpineNet: automated classification and evidence visualization in spinal MRIs. Med. Image Anal. 41, 63–73 (2017)

    Article  Google Scholar 

  16. Jamaludin, A., et al.: Automation of reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is comparable with an expert radiologist. Eur. Spine J. 26, 1374–1383 (2017)

    Article  Google Scholar 

  17. Lewandrowskl, K.U., et al.: Feasibility of deep learning algorithms for reporting in routine spine magnetic resonance imaging. Int. J. Spine Surg. 14, S86–S97 (2022)

    Article  Google Scholar 

  18. Lootus, M., Kadir, T., Zisserman, A.: Vertebrae detection and labelling in lumbar MR images. In: Yao, J., Klinder, T., Li, S. (eds.) Computational Methods and Clinical Applications for Spine Imaging. LNCVB, vol. 17, pp. 219–230. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07269-2_19

    Chapter  Google Scholar 

  19. Lu, J.T., et al.: Deep spine: automated lumbar vertebral segmentation, disc-level designation, and spinal stenosis grading using deep learning. In: Machine Learning for Healthcare (2018)

    Google Scholar 

  20. Maccauro, G., Spinelli, M.S., Mauro, S., Perisano, C., Graci, C., Rosa, M.A.: Physiopathology of spine metastasis. Int. J. Surg. Oncol. 2011 (2011)

    Google Scholar 

  21. Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: TrackFormer: multi-object tracking with transformers. In: Proceedings of CVPR (2022)

    Google Scholar 

  22. Merali, Z., Wang, J.Z., Badhiwala, J.H., Witiw, C.D., Wilson, J.R., Fehlings, M.G.: A deep learning model for detection of cervical spinal cord compression in MRI scans. Sci. Rep. 11(1), 1–11 (2021)

    Article  Google Scholar 

  23. Ortiz Gomez, J.: The incidence of vertebral body metastases. Int. Orthop. 19(5), 309–311 (1995)

    Article  Google Scholar 

  24. Pfirrmann, C.W.A., Metzdorf, A., Zanetti, M., Hodler, J., Boos, N.: Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26(17), 1873–1878 (2001)

    Article  Google Scholar 

  25. Shaw, B., Mansfield, F.L., Borges, L.: One-stage posterolateral decompression and stabilization for primary and metastatic vertebral tumors in the thoracic and lumbar spine. J. Neurosurg. 70(3), 405–410 (1989)

    Article  Google Scholar 

  26. Tao, R., Zheng, G.: Spine-transformers: vertebra detection and localization in arbitrary field-of-view spine CT with transformers. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 93–103. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_9

    Chapter  Google Scholar 

  27. Tokuhashi, Y., Uei, H., Oshima, M., Ajiro, Y.: Scoring system for prediction of metastatic spine tumor prognosis. World J. Orthop. 5(3), 262–271 (2014)

    Article  Google Scholar 

  28. van Tol, F.R., Massier, J.R.A., Frederix, G.W.J., Öner, F.C., Verkooijen, H.M., Verlaan, J.J.: Costs associated with timely and delayed surgical treatment of spinal metastases. Glob. Spine J. (2021)

    Google Scholar 

  29. van Tol, F.R., Versteeg, A.L., Verkooijen, H.M., Öner, F.C., Verlaan, J.J.: Time to surgical treatment for metastatic spinal disease: identification of delay intervals. Glob. Spine J. (2021)

    Google Scholar 

  30. Wang, J., Fang, Z., Lang, N., Yuan, H., Su, M.Y., Baldi, P.: A multi-resolution approach for spinal metastasis detection using deep Siamese neural networks. Comput. Biol. Med. 84, 137–146 (2017)

    Article  Google Scholar 

  31. Windsor, R., Jamaludin, A.: The ladder algorithm: finding repetitive structures in medical images by induction. In: IEEE ISBI (2020)

    Google Scholar 

  32. Windsor, R., Jamaludin, A., Kadir, T., Zisserman, A.: A convolutional approach to vertebrae detection and labelling in whole spine MRI. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 712–722. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_69

    Chapter  Google Scholar 

  33. Windsor, R., Jamaludin, A., Kadir, T., Zisserman, A.: SpineNetV2: automated detection, labelling and radiological grading of clinical MR scans. In: Technical report arXiv:2205.01683 (2022)

  34. Zhao, S., Chen, B., Chang, H., Wu, X., Li, S.: Discriminative dictionary-embedded network for comprehensive vertebrae tumor diagnosis. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 691–701. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_67

    Chapter  Google Scholar 

Download references

Acknowledgements and Ethics:

Ethics for the spinal cancer dataset extraction are provided by OSCLMRIC (IRAS project ID: 207857). We are grateful to Dr. Sarim Ather, Dr. Jill Urban and Prof. Jeremy Fairbank for insightful conversations on the clinical aspect of this work as well as Prof. Ian McCall for annotating the data. Finally, we thank to our funders: Cancer Research UK via the EPSRC AIMS CDT and EPSRC Programme Grant Visual AI (EP/T025872/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rhydian Windsor .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 901 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Windsor, R., Jamaludin, A., Kadir, T., Zisserman, A. (2022). Context-Aware Transformers for Spinal Cancer Detection and Radiological Grading. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13433. Springer, Cham. https://doi.org/10.1007/978-3-031-16437-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16437-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16436-1

  • Online ISBN: 978-3-031-16437-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics