Building Digital Shadows for Production Control | SpringerLink
Skip to main content

Abstract

Digital Shadows can support stakeholders in production control by providing context-aware and aggregated information serving a specific task and thus supporting in the decision-making. In this paper, we propose a methodology for building Digital Shadows with focus on production control. We identify the building blocks for defining Digital Shadows consisting of purpose, models and data. Furthermore, we suggest an implementation for the methodology as a decision support tool for the stakeholders in production control. Finally, we illustrate the use of our methodology on the basis of a exemplary use-case of production control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Riesener, M., Schuh, G., Dölle, C., Tönnes, C.: The digital shadow as enabler for data analytics in product life cycle managemen. Procedia CIRP 26, 729–734 (2019)

    Article  Google Scholar 

  2. Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., Sui, F.: Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manuf. Technol. 94(9–12), 3563–3576 (2018)

    Article  Google Scholar 

  3. Schuh, G., et al.: Effizientere produktion mit digitalen schatten. Zeitschrift für wirtschaftlichen Fabrikbetrieb 115(s1), 105–107 (2020)

    Article  Google Scholar 

  4. Schuh, G., Gützlaff, A., Sauermann, F., Maibaum, J.: Digital shadows as an enabler for the internet of production. In: Lalic, B., Majstorovic, V., Marjanovic, U., von Cieminski, G., Romero, D. (eds.) APMS 2020. IAICT, vol. 591, pp. 179–186. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57993-7_21

    Chapter  Google Scholar 

  5. Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital twin in manufacturing: a categorical literature review and classification. IFAC-PapersOnLine 51(11), 1016–1022 (2018)

    Article  Google Scholar 

  6. Schuh, G., Stich, V.: Produktionsplanung und-steuerung 1: Grundlagen der PPS. Springer, Berlin, Heidelberg (2012). 4, überarbeitete auflage ed

    Google Scholar 

  7. Steinlein, F., Liu, Y., Stich, V.: Development of a decision support app for short term production control to improve the adherence to delivery dates. In: Nyhuis, P., Herberger, D., Hübner, M. (eds.), Proceedings of the 1st Conference on Production Systems and Logistics (CPSL 2020) (Hannover), pp. 438–447, Institutionelles Repositorium der Leibniz Universität Hannover, Hannover (2020)

    Google Scholar 

  8. Scherwitz, P., et al.: Digitale transformation in der produktioinsplanung und -steuerung: Ergebnisse einer gemeinsamen studie der produktionstechnischen institute fraunhofer igcv, ifa, ipmt und wzl. Zeitschrift für wirtschaftlichen Fabrikbetrieb ZWF 115(4), 252–256 (2020)

    Article  Google Scholar 

  9. Kunath, M., Winkler, H.: Integrating the digital twin of the manufacturing system into a decision support system for improving the order management process. Procedia CIRP 72, 225–231 (2018)

    Article  Google Scholar 

  10. Becker, F., et al.: A conceptual model for digital shadows in industry and its application. In: Ghose, A., Horkoff, J., Silva Souza, V.E., Parsons, J., Evermann, J. (eds.) ER 2021. LNCS, vol. 13011, pp. 271–281. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89022-3_22

    Chapter  Google Scholar 

  11. Bibow, P., et al.: Model-driven development of a digital twin for injection molding. In: Dustdar, S., Yu, E., Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 85–100. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3_6

    Chapter  Google Scholar 

  12. Brecher, C., Buchsbaum, M., Storms, S.: Control from the cloud: edge computing, services and digital shadow for automation technologies. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 9327–9333. IEEE (2019)

    Google Scholar 

  13. Qi, Q., Tao, F.: Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison. IEEE Access 6, 3585–3593 (2018)

    Article  Google Scholar 

  14. Bauernhansl, T., Hartleif, S., Felix, T.: The digital shadow of production-a concept for the effective and efficient information supply in dynamic industrial environments. Procedia CIRP 72, 69–74 (2018)

    Article  Google Scholar 

  15. Pause, D., et al.: Task-specific decision support systems in multi-level production systems based on the digital shadow. In: 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS), pp. 603–608. IEEE (2019)

    Google Scholar 

  16. Riesener, M., Dölle, C., Schuh, G., Tönnes, C.: Framework for defining information quality based on data attributes within the digital shadow using LDA. Procedia CIRP 83, 304–310 (2019)

    Article  Google Scholar 

  17. Schuh, G., Gützlaff, A., Schmidhuber, M., Maibaum, J.: Development of digital shadows for production control (2021). ESSN: 2701-6277

    Google Scholar 

  18. Schuh, G., Dölle, C., Tönnes, C.: Methodology for the derivation of a digital shadow for engineering management. In: 2018 IEEE Technology and Engineering Management Conference (TEMSCON), pp. 1–6. IEEE (2018)

    Google Scholar 

  19. Stecken, J., Ebel, M., Bartelt, M., Poeppelbuss, J., Kuhlenkötter, B.: Digital shadow platform as an innovative business model. Procedia CIRP 83, 204–209 (2019)

    Article  Google Scholar 

  20. Parott, A., Warshaw, L.: Industry 4.0 and the digital twin: manufacturing meets its match, Retrieved January, vol. 23, p. 2019 (2017)

    Google Scholar 

  21. Kubenke, J., Roh, P., Kunz, A.: Assessing the efficiency of information retrieval from the digital shadow at the shop floor using it assistive systems. Mechatronics, pp. 202–209 (2018)

    Google Scholar 

Download references

Acknowledgements

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC-2023 Internet of Production - 390621612.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annkristin Hermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schuh, G., Gützlaff, A., Fulterer, J., Hermann, A. (2022). Building Digital Shadows for Production Control. In: Kim, D.Y., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Smart Manufacturing and Logistics Systems: Turning Ideas into Action. APMS 2022. IFIP Advances in Information and Communication Technology, vol 663. Springer, Cham. https://doi.org/10.1007/978-3-031-16407-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16407-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16406-4

  • Online ISBN: 978-3-031-16407-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics