Abstract
Extraction of new knowledge from earlier obtained and integrated knowledge is one of the main stages of intelligent knowledge analysis. To handle such a task, a knowledge-based system should be able to decompose complex or composite knowledge structures and extract new knowledge items, which were hidden or non-obvious before. Existed approaches to decomposition within object-oriented paradigm provide different variants of partitioning or fragmentation of main knowledge structures, such as objects, classes, and relations among them, however, most of them do not consider semantic structural and functional dependencies among properties and methods of classes that affect on the decomposition process. In this paper, we introduced concepts of fuzzy structural and functional atoms, as well as molecules of fuzzy homogeneous classes of objects, within such a knowledge representation model as fuzzy object-oriented dynamic networks. In addition, we proposed the algorithm for the decomposition of fuzzy homogeneous classes of objects, which implements the idea of universal decomposition exploiter of fuzzy classes of objects, and constructs semantically correct subclasses of a fuzzy homogeneous class of objects by solving appropriate constraint satisfaction problem that defines decomposition conditions. To demonstrate some possible application scenarios, we provided an appropriate example of the decomposition of a fuzzy homogeneous class of objects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ambler, S.W.: Chapter 14 - mapping objects to relational databases. In: Agile Database Techniques: Effective Strategies for the Agile Software Developer, pp. 197–229. Wiley, Indianapolis (2003)
Apt, K.R.: Principles of Constraint Programming. Cambridge University Press, New York (2003)
Bellatreche, L., Bouchakri, R., Cuzzocrea, A., Maabout, S.: Incremental algorithms for selecting horizontal schemas of data warehouses: the dynamic case. In: Hameurlain, A., Rahayu, W., Taniar, D. (eds.) Globe 2013. LNCS, vol. 8059, pp. 13–25. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40053-7_2
Bellatreche, L., Karlapalem, K., Simonet, A.: Horizontal class partitioning in object-oriented databases. In: Hameurlain, A., Tjoa, A.M. (eds.) DEXA 1997. LNCS, vol. 1308, pp. 58–67. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0022018
Bellatreche, L., Karlapalem, K., Simonet, A.: Algorithms and support for horizontal class partitioning in object-oriented databases. Distrib. Parallel Databases 8(2), 155–179 (2000). https://doi.org/10.1023/A:1008745624048
Bellatreche, L., Simonet, A., Simonet, M.: Vertical fragmentation in distributed object database systems with complex attributes and methods. In: Proceedings of 7th International Conference on and Workshop Database Expert System Application (DEXA 1996), Zurich, Switzerland, pp. 15–21 (1996). https://doi.org/10.1109/DEXA.1996.558266
Birahnu, L., Atnafu, S., Getahun, F.: Native XML document fragmentation model. In: Proceedings of 2010 6th International Conference on Signal-Image Technology Internet Based Systems, Kuala Lumpur, Malaysia, pp. 233–240 (2010). https://doi.org/10.1109/SITIS.2010.47
Braganholo, V., Mattoso, M.: A survey on XML fragmentation. ACM SIGMOD Rec. 43(3), 24–35 (2014). https://doi.org/10.1145/2694428.2694434
Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers, San Francisco (2003)
Drissi, A., Nait-Bahloul, S., Benouaret, K., Benslimane, D.: Horizontal fragmentation for fuzzy querying databases. Distrib. Parallel Databases 37(3), 441–468 (2018). https://doi.org/10.1007/s10619-018-7250-4
Ezeife, C.I., Barker, K.: Horizontal class fragmentation in distributed object based systems. Technical report TR 93-04, University of Manitoba Department of Computer Science, Winnipeg, Manitoba, Canada (1993)
Ezeife, C.I., Barker, K.: A comprehensive approach to horizontal class fragmentation in a distributed object based system. Distrib. Parallel Databases 3(3), 247–272 (1995). https://doi.org/10.1007/BF01418059
Ezeife, C.I., Barker, K.: Distributed object based design: vertical fragmentation of classes. Distrib. Parallel Databases 6(4), 317–350 (1998). https://doi.org/10.1023/A:1008666830313
Faitelson, D., Heinrich, R., Tyszberowicz, S.: Supporting software architecture evolution by functional decomposition. In: Proceedings of 5th International Conference on Model-Driven Engineering Software Development (MODELSWARD), Porto, Portugal, pp. 435–442 (2017). https://doi.org/10.5220/0006206204350442
Faitelson, D., Heinrich, R., Tyszberowicz, S.: Functional decomposition for software architecture evolution. In: Pires, L.F., Hammoudi, S., Selic, B. (eds.) MODELSWARD 2017. CCIS, vol. 880, pp. 377–400. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94764-8_16
Faitelson, D., Tyszberowicz, S.: Improving design decomposition. In: Li, X., Liu, Z., Yi, W. (eds.) SETTA 2015. LNCS, vol. 9409, pp. 185–200. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25942-0_12
Faitelson, D., Tyszberowicz, S.: Improving design decomposition (extended version). Formal Aspects Comput. 29(4), 601–627 (2017). https://doi.org/10.1007/s00165-017-0428-0
Freuder, E.C., Mackworth, A.K.: Constraint satisfaction: an emerging paradigm. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, chap. 2, pp. 13–27. Elsevier, Amsterdam (2006)
Fung, C.W., Karlapalem, K., Li, Q.: Cost-driven vertical class partitioning for methods in object oriented databases. The VLDB J. 12(3), 187–210 (2003). https://doi.org/10.1007/s00778-002-0084-7
Goli, M., Rouhani Rankoohi, S.M.T.: A new vertical fragmentation algorithm based on ant collective behavior in distributed database systems. Knowl. Inf. Syst. 30(2), 435–455 (2012). https://doi.org/10.1007/s10115-011-0384-6
Hamdi, M., Pethe, R., Chetty, A.S., Kim, D.-K.: Threshold-driven class decomposition. In: Proceedings of 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), Milwaukee, WI, USA, pp. 884–887 (2019). https://doi.org/10.1109/COMPSAC.2019.00130
Hartmann, S., Ma, H., Schewe, K.-D.: Cost-based vertical fragmentation for XML. In: Chang, K.C.-C., Wang, W., Chen, L., Ellis, C.A., Hsu, C.-H., Tsoi, A.C., Wang, H. (eds.) APWeb/WAIM -2007. LNCS, vol. 4537, pp. 12–24. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72909-9_2
Karlapalem, K., Li, Q.: Partitioning schemes for object oriented databases. In: Proceedings of 5th International Workshop Research Issues in Data Engineering-Distributed Object Management (RIDE-DOM 1995), Taipei, Taiwan, pp. 42–49 (1995). https://doi.org/10.1109/RIDE.1995.378746
Karlapalem, K., Li, Q.: A framework for class partitioning in object-oriented databases. Distrib. Parallel Databases 8(3), 333–366 (2000). https://doi.org/10.1023/A:1008769213554
Karlapalem, K., Li, Q., Vieweg, S.: Method-induced partitioning schemes for object-oriented databases. In: Proceedings of 16th International Conference on Distributed Computing Systems, Hong Kong, China, pp. 377–384 (1996). https://doi.org/10.1109/ICDCS.1996.507985
Kechar, M., Bahloul, S.N.: Hybrid fragmentation of XML data warehouse using K-means algorithm. In: Manolopoulos, Y., Trajcevski, G., Kon-Popovska, M. (eds.) ADBIS 2014. LNCS, vol. 8716, pp. 70–82. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10933-6_6
Kling, P., Özsu, M.T., Daudjee, K.: Scaling XML query processing: distribution, localization and pruning. Distrib. Parallel Databases 29(5–6), 445–490 (2011). https://doi.org/10.1007/s10619-011-7085-8
Lee, J., Kim, D.-K., Kim, S., Park, S.: Decomposing class responsibilities using distance-based method similarity. Front. Comput. Sci. 10(4), 612–630 (2016). https://doi.org/10.1007/s11704-015-5001-5
Lee, S., Lim, H.: Attribute partitioning algorithm in DOODB. In: Proceedings of International Conference on Parallel and Distributed Systems, Seoul, Korea (South), pp. 702–707 (1997). https://doi.org/10.1109/ICPADS.1997.652619
Navathe, S.B., Karlapalem, K., Ra, M.: A mixed fragmentation methodology for initial distributed database design. Technical report TR 90-17, CIS Dept, University of Florida, Gainesville, FL, USA (1990)
Quang, V.D., Ban, D.V., Ha, H.C.: A method of object identification based on fuzzy object functional dependencies in fuzzy object-oriented databases. In: Proceedings of 4th Fourth International Conference on Knowledge and Systems Engineering (KSE), Danang, Vietnam, pp. 46–53 (2012). https://doi.org/10.1109/KSE.2012.14
Schewe, K.D.: Fragmentation of object oriented and semi-structured data. In: Haav, H.M., Kalja, A. (eds.) Databases and Information Systems II, pp. 1–14. Springer, Dordrecht (2002). https://doi.org/10.1007/978-94-015-9978-8_1
Terletskyi, D.A., Provotar, A.I.: Fuzzy object-oriented dynamic networks. I. Cybern. Syst. Anal. 51(1), 34–40 (2015). https://doi.org/10.1007/s10559-015-9694-0
Terletskyi, D.A., Provotar, A.I.: Fuzzy object-oriented dynamic networks. II. Cybern. Syst. Anal. 52(1), 38–45 (2016). https://doi.org/10.1007/s10559-016-9797-2
Terletskyi, D.O.: Run-time class generation: algorithm for decomposition of homogeneous classes. In: Lopata, A., Butkienė, R., Gudonienė, D., Sukackė, V. (eds.) ICIST 2020. CCIS, vol. 1283, pp. 243–254. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59506-7_20
Terletskyi, D.O., Provotar, O.I.: Algorithm for intersection of fuzzy homogeneous classes of objects. In: Proceedings of IEEE 2020 15th International Conference on Computer Sciences and Information Technologies (CSIT), Zbarazh, Ukraine, vol. 2, pp. 314–317 (2020). https://doi.org/10.1109/CSIT49958.2020.9321914
Terletskyi, D.O., Provotar, O.I.: Intersection of fuzzy homogeneous classes of objects. In: Shakhovska, N., Medykovskyy, M.O. (eds.) CSIT 2020. AISC, vol. 1293, pp. 306–323. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63270-0_21
Terletskyi, D.O., Yershov, S.V.: Difference of fuzzy homogeneous classes of objects. In: Proceedings of 17th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, (ICTERI), Kherson, Ukraine, vol. 1, pp. 24–39 (2021)
Terletskyi, D., Yershov, S.: Union of fuzzy homogeneous classes of objects. In: Babichev, S., Lytvynenko, V. (eds.) ISDMCI 2021. LNDECT, vol. 77, pp. 665–684. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-82014-5_46
Van Thang, D.: Dependence fuzzy objects. In: Proceedings of International Conference on Advanced Technologies for Communications (ATC), Hanoi, Vietnam, pp. 160–166 (2014). https://doi.org/10.1109/ATC.2014.7043376
Van Thang, D., Manh, T.Q., Van Han, N.: Fuzzy object dependencies and linguistic quantifier. In: Proceedings on 13th International Joint Conference on Computer Science and Software Engineering (JCSSE), Khon Kaen, Thailand, pp. 1–5 (2016). https://doi.org/10.1109/JCSSE.2016.7748890
Acknowledgments
This research work has been supported by the National Academy of Science of Ukraine (project 0121U111944 Development of Methods and Tools for Construction Domain-Oriented Intelligent Software Systems Based on Object-Oriented Dynamic Networks).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Terletskyi, D.O., Yershov, S.V. (2022). Decomposition of Fuzzy Homogeneous Classes of Objects. In: Lopata, A., Gudonienė, D., Butkienė, R. (eds) Information and Software Technologies. ICIST 2022. Communications in Computer and Information Science, vol 1665. Springer, Cham. https://doi.org/10.1007/978-3-031-16302-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-16302-9_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16301-2
Online ISBN: 978-3-031-16302-9
eBook Packages: Computer ScienceComputer Science (R0)