IoT Applications Powered by Piezoelectric Vibration Energy Harvesting Device | SpringerLink
Skip to main content

IoT Applications Powered by Piezoelectric Vibration Energy Harvesting Device

  • Conference paper
  • First Online:
Information and Software Technologies (ICIST 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1665))

Included in the following conference series:

  • 627 Accesses

Abstract

Regarding IoT applications, the efficiency has immensely upgraded, though the product features remain the same, the progress in extremely low power sensing and computing has boosted the efficiency and thereby the power consumption of IoT devices have drastically dropped. With this change happening for the first time in history, it is actually feasible to tap into this appreciable energy available in our surroundings to power such electronic devices. The tapped energy from environment not only enables self-reliant electronics but also gives a chance for addition of newer features in IoT applications. This paper is devoted to the development of a multilayer PVDF based piezoelectric vibration energy harvesting device for powering wireless sensor networks and low power electronic devices. The purpose of the device is to be the power supply to endless applications of information technology.

The designed energy harvester successfully generates an average power of \(9.2\,\upmu {\text{W}}/{\text{g}}/{\text{mm}}^{3}\) with a resonant frequency of 43 Hz, generating at least 15 V rms voltage and 495 μW power for acceleration 1 g. The commercial piezo sensors generate power of only \(10\,{\text{nW}}/{\text{g}}/{\text{mm}}^{3}\). This work reveals the challenges and limitations involved in constructing a realistic piezoelectric energy harvesting system and how to overcome them with the proposed harvester design. The method of fabrication and design of the proposed energy harvester are also discussed. Comparison of the harvester results with other author works is presented. Future recommendations, suitable application areas and market size information is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schmitz, J.A., Sherman, J.M., Hansen, S., Murray, S.J., Balkir, S., Hoffman, M.W.: A low-power, single-chip electronic skin interface for prosthetic applications. IEEE Trans. Biomed. Circuits Syst. 13(6), 1186–1200 (2019). https://doi.org/10.1109/TBCAS.2019.2948006

    Article  Google Scholar 

  2. Kaustubh, P., Vaish, N.: Highly efficient PVDF film energy harvester for self charging vehicle system. In: Proceedings of the 9th Conference on Industrial and Commercial Use of Energy, ICUE 2012, pp. 179–183 (2012)

    Google Scholar 

  3. Rasheed, A., Iranmanesh, E., Andrenko, A.S., Wang, K.: Sensor integrated RFID tags driven by energy scavenger for sustainable wearable electronics applications. In: 2016 IEEE International Conference on RFID Technology and Applications, RFID-TA 2016, pp. 81–86 (2016). https://doi.org/10.1109/RFID-TA.2016.7750757

  4. Snehalika, Bhasker, M.U.: Piezoelectric energy harvesting from shoes of soldier. In: 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, ICPEICES 2016, pp. 1–5 (2017). https://doi.org/10.1109/ICPEICES.2016.7853116

  5. Wang, Z.L., Chen, J., Lin, L.: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci 8, 2250 (2015). https://doi.org/10.1039/c5ee01532d

  6. Keim, R.G.: The future is now. J. Clin. Orthod. 51(1), 9–10 (2017)

    Google Scholar 

  7. Zhang, X., Sessler, G.M., Xue, Y., Ma, X.: Audio and ultrasonic responses of laminated fluoroethylenepropylene and porous polytetrafluoroethylene films with different charge distributions. J. Phys. D. Appl. Phys. 49(20) (2016). https://doi.org/10.1088/0022-3727/49/20/205502

  8. Varga, M., et al.: Direct piezoelectric responses of soft composite fiber mats. Appl. Phys. Lett. 102(15), 1–5 (2013). https://doi.org/10.1063/1.4802593

    Article  Google Scholar 

  9. Finot, E., Passian, A., Thundat, T.: Measurement of mechanical properties of cantilever shaped materials. Sensors 8(5) (2008). https://doi.org/10.3390/s8053497

  10. Aparna, Karanth, P.N., Kulkarni, S.M.: Modeling of cantilever type piezoelectric polymer actuator. In: 2018 3rd International Conference on Control and Robotics Engineering, ICCRE 2018, no. 1, pp. 274–279 (2018). https://doi.org/10.1109/ICCRE.2018.8376479

  11. Afroze, S., Binti Haji Bakar, A.N., Reza, M.S., Salam, M.A., Azad, A.K.: Polyvinylidene fluoride (PVDF) piezoelectric energy harvesting from rotary retracting mechanism: imitating forearm motion. In: IET Conference Publications, vol. 2018, no. CP750, pp. 2–5 (2018). https://doi.org/10.1049/cp.2018.1591

  12. Liu, H., Zhong, J., Lee, C., Lee, S.W., Lin, L.: A comprehensive review on piezoelectric energy harvesting technology: materials, mechanisms, and applications. Appl. Phys. Rev. 5(4) (2018). https://doi.org/10.1063/1.5074184

  13. Kaczmarek, H., Królikowski, B., Klimiec, E., Kowalonek, J.: New piezoelectric composites based on isotactic polypropylene filled with silicate. J. Mater. Sci.: Mater. Electron. 28(9), 6435–6447 (2017). https://doi.org/10.1007/s10854-016-6329-9

    Article  Google Scholar 

  14. McCall, W.R., Kim, K., Heath, C., La Pierre, G., Sirbuly, D.J.: Piezoelectric nanoparticle-polymer composite foams. ACS Appl. Mater. Interfaces 6(22), 19504–19509 (2014). https://doi.org/10.1021/am506415y

    Article  Google Scholar 

  15. Programme of the 23rd International Conference-School ‘Advanced Materials and Technologies 2021’ of Traces of Molecules, pp. 23–27 (2021)

    Google Scholar 

  16. Ghosh, S.K., Mandal, D.: Efficient natural piezoelectric nanogenerator: electricity generation from fish swim bladder. Nano Energy 28, 356–365 (2016). https://doi.org/10.1016/j.nanoen.2016.08.030

    Article  Google Scholar 

  17. Zhao, Y., Zhang, Y., Xu, J., Zhang, M., Yu, P., Zhao, Q.: Frequency domain analysis of mechanical properties and failure modes of PVDF at high strain rate. Constr. Build. Mater. 235, 117506 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117506

    Article  Google Scholar 

  18. Eddiai, A., Meddad, M., Farhan, R., Mazroui, M., Rguiti, M., Guyomar, D.: Using PVDF piezoelectric polymers to maximize power harvested by mechanical structure. Superlattices Microstruct. 127, 20–26 (2019). https://doi.org/10.1016/J.SPMI.2018.03.044

    Article  Google Scholar 

  19. Król-Morkisz, K., Pielichowska, K.: Thermal decomposition of polymer nanocomposites with functionalized nanoparticles. Polym. Compos. Funct. Nanoparticles Synth. Prop. Appl. 405–435 (2018). https://doi.org/10.1016/B978-0-12-814064-2.00013-5

  20. Ray, S., Cooney, R.P.: Thermal degradation of polymer and polymer composites. In: Handbook of Environmental Degradation of Materials, 3rd edn., pp. 185–206 (2018). https://doi.org/10.1016/B978-0-323-52472-8.00009-5

  21. Tarbuttona, J., Leb, T., Helfrichb, G., Kirkpatrickb, M.: Phase transformation and shock sensor response of additively manufactured piezoelectric PVDF. Procedia Manuf. 10, 982–989 (2017). https://doi.org/10.1016/J.PROMFG.2017.07.089

    Article  Google Scholar 

  22. Savanth, A., Weddell, A.S., Myers, J., Flynn, D., Member, S., Al-hashimi, B.M.: Direct operation for energy harvesting systems. 64(9), 2370–2379 (2017)

    Google Scholar 

  23. Home - Nowi. https://www.nowi-energy.com/. Accessed 22 Mar 2022

  24. Kim, W.K.: Design and Analysis of Switching Circuits for Energy Harvesting in Piezostrutures (2012)

    Google Scholar 

  25. Cepenas, M., et al.: Research of parameters of plastic piezoelectric harvester for practical model implementation. In: Proceedings of the 13th International Conference on ELEKTRO 2020, vol. 2020-May (2020). https://doi.org/10.1109/ELEKTRO49696.2020.9130273

  26. Rammohan, S., Chiplunkar, S., Ramya, C.M., Kumar, S.J., Jain, A.: Multi-layer piezoelectric energy harvesters for improved power generation, no. Fig 1, pp. 1–6 (2014)

    Google Scholar 

  27. Rammohan, S., Ramya, C., Jayanth Kumar, S., Anjana, J., Rudra, P.: Low frequency vibration energy harvesting using arrays of PVDF piezoelectric bimorphs. J. Inst. smart Struct. Syst. 3(1), 18–27 (2014)

    Google Scholar 

  28. Jiang, Y., Shiono, S., Hamada, H., Fujita, T., Higuchi, K., Maenaka, K.: Low-frequency energy harvesting using a laminated PVDF cantilever with a magnetic mass. Maenaka Human-Sensing Fusion Project, Japan Science and Technology Agency, Himeji, Japan, no. November (2009)

    Google Scholar 

  29. Sriramdas, R., Chiplunkar, S., Cuduvally, R.M., Pratap, R.: Performance enhancement of piezoelectric energy harvesters using multilayer and multistep beam configurations. IEEE Sens. J. 15(6), 3338–3348 (2015). https://doi.org/10.1109/JSEN.2014.2387882

    Article  Google Scholar 

  30. Takise, H., Takahashi, T., Suzuki, M., Aoyagi, S.: Fabrication of piezoelectric vibration energy harvester using coatable PolyVinylidene DiFluoride and its characterisation. Micro Nano Lett. 12(8), 569–574 (2017). https://doi.org/10.1049/mnl.2017.0128

    Article  Google Scholar 

  31. Cao, Z., Zhang, J., Kuwano, H.: Vibration energy harvesting characterization of 1 cm2 poly(vinylidene fluoride) generators in vacuum. Jpn. J. Appl. Phys. 50(9), PART 3, 13–17 (2011). https://doi.org/10.1143/JJAP.50.09ND15

  32. Song, J., Zhao, G., Li, B., Wang, J.: Design optimization of PVDF-based piezoelectric energy harvesters. Heliyon 3(9), e00377 (2017). https://doi.org/10.1016/J.HELIYON.2017.E00377

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandana Ravikumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ravikumar, C. (2022). IoT Applications Powered by Piezoelectric Vibration Energy Harvesting Device. In: Lopata, A., Gudonienė, D., Butkienė, R. (eds) Information and Software Technologies. ICIST 2022. Communications in Computer and Information Science, vol 1665. Springer, Cham. https://doi.org/10.1007/978-3-031-16302-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16302-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16301-2

  • Online ISBN: 978-3-031-16302-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics