Fast Searching on k-Combinable Graphs | SpringerLink
Skip to main content

Fast Searching on k-Combinable Graphs

  • Conference paper
  • First Online:
Algorithmic Aspects in Information and Management (AAIM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13513))

Included in the following conference series:

  • 532 Accesses

Abstract

Finding an optimal fast search strategy for graphs is challenging, sometimes even when graphs have very small treewidth, like cacti, cartesian product of a tree and an edge, etc. However, it may be easier to find an optimal fast search strategy for some critical subgraphs of the given graph. Although fast searching is not subgraph-closed, this observation still motivates us to establish relationships between optimal fast search strategies for a graph and its subgraphs. In this paper, we introduce the notion of k-combinable graphs and propose a new method for computing their fast search number. Assisted by the new method, we investigate the fast search number of cacti graphs and the cartesian product of a tree and an edge. Algorithms for producing fast search strategies for the above graphs, along with rigorous proofs, are given in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bienstock, D.: Graph searching, path-width, tree-width and related problems (a survey). DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 5, 33–49 (1991)

    Article  MathSciNet  Google Scholar 

  2. Bonato, A., Yang, B.: Graph searching and related problems. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 1511–1558. Springer, New York (2013). https://doi.org/10.1007/978-1-4419-7997-1_76

    Chapter  Google Scholar 

  3. Breisch, R.: An intuitive approach to speleotopology. Southwestern Cavers 6(5), 72–78 (1967)

    Google Scholar 

  4. Dereniowski, D., Diner, Ö., Dyer, D.: Three-fast-searchable graphs. Discret. Appl. Math. 161(13), 1950–1958 (2013)

    Article  MathSciNet  Google Scholar 

  5. Dyer, D., Yang, B., Yaşar, Ö.: On the fast searching problem. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 143–154. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68880-8_15

    Chapter  Google Scholar 

  6. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching. Theoret. Comput. Sci. 399(3), 236–245 (2008)

    Article  MathSciNet  Google Scholar 

  7. Makedon, F.S., Papadimitriou, C.H., Sudborough, I.H.: Topological bandwidth. SIAM J. Algebraic Discrete Methods 6(3), 418–444 (1985)

    Article  MathSciNet  Google Scholar 

  8. Megiddo, N., Hakimi, S.L., Garey, M.R., Johnson, D.S., Papadimitrioum, C.H.: The complexity of searching a graph. J. ACM 35(1), 18–44 (1988)

    Article  MathSciNet  Google Scholar 

  9. Parsons, T.: Pursuit-evasion in a graph. In: Proceedings of the International Conference on the Theory and Applications of Graphs, pp. 426–441. Springer-Verlag (1976). https://doi.org/10.1007/BFb0070400

  10. Stanley, D., Yang, B.: Fast searching games on graphs. J. Comb. Optim. 22(4), 763–777 (2011)

    Article  MathSciNet  Google Scholar 

  11. Xue, Y., Yang, B.: The fast search number of a cartesian product of graphs. Discret. Appl. Math. 224, 106–119 (2017)

    Article  MathSciNet  Google Scholar 

  12. Xue, Y., Yang, B., Zhong, F., Zilles, S.: The fast search number of a complete \(k\)-partite graph. Algorithmica 80(12), 3959–3981 (2018)

    Article  MathSciNet  Google Scholar 

  13. Yang, B.: Fast edge searching and fast searching on graphs. Theoret. Comput. Sci. 412(12), 1208–1219 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boting Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xue, Y., Yang, B., Zilles, S. (2022). Fast Searching on k-Combinable Graphs. In: Ni, Q., Wu, W. (eds) Algorithmic Aspects in Information and Management. AAIM 2022. Lecture Notes in Computer Science, vol 13513. Springer, Cham. https://doi.org/10.1007/978-3-031-16081-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16081-3_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16080-6

  • Online ISBN: 978-3-031-16081-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics