Abstract
The results of an experiment to measure cognitive load using arithmetic and graphical tasks and galvanic skin response (GSR) biometric technique are presented in this paper. 62 volunteers were recruited to take part in a laboratory experiment conducted with the integrated iMotions biometric platform. Data were collected using observations, Single Ease Question (SEQ) and NASA Task Load Index (NASA-TLX) self-report questionnaires, and GSR measurements. The 18 performance, subjective, and psychophysiological indicators were calculated from the collected data to measure the cognitive load associated with arithmetic and graphical tasks. Nonparametric tests of statistical significance of differences between individual metrics were made for the easy, medium, and hard arithmetic and graphical tasks. The conducted research proved the usefulness of most measures in the analysis of the cognitive load associated with arithmetic and graphical tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Van Gog, T., Paas, F.: Cognitive load measurement. In: Seel, N.M. (ed.) Encyclopedia of the Sciences of Learning. Springer, Boston (2012). https://doi.org/10.1007/978-1-4419-1428-6_412
Kumar, N., Kumar, J.: Measurement of cognitive load in HCI systems using EEG power spectrum: an experimental study. Procedia Comput. Sci. 84, 70–78 (2016). https://doi.org/10.1016/j.procs.2016.04.068
Zihisire Muke, P., Trawinski, B.: Concept of research into cognitive load in human-computer interaction using biometric techniques. In: Proceedings of the PP-RAI 2019 Conference, Wrocław, Poland, pp. 78–83 (2019). http://pp-rai.pwr.edu.pl/PPRAI19_proceedings.pdf. Accessed 01 June 2022
iMotions Biometric Research Platform (8.1): iMotions A/S, Copenhagen, Denmark (2020)
Bresso, P.: Study of the impact of various stimuli on human cognitive load using electroencephalography and other biometric techniques. Master’s thesis, Wroclaw University of Science and Technology, Wrocław (2020)
Desai, H.: Study of the impact of various stimuli on human cognitive load using eye tracking and other biometric techniques. Master’s thesis, Wroclaw University of Science and Technology, Wrocław (2021)
Maharani, P.A.: Study of the impact of various stimuli on human cognitive load using facial expression analysis and other biometric techniques. Master’s thesis, Wroclaw University of Science and Technology, Wrocław (2020)
Zihisire Muke, P., Piwowarczyk, M., Telec, Z., Trawiński, B., Maharani, P.A., Bresso, P.: Impact of the Stroop effect on cognitive load using subjective and psychophysiological measures. In: Nguyen, N.T., Iliadis, L., Maglogiannis, I., Trawiński, B. (eds.) ICCCI 2021. LNCS (LNAI), vol. 12876, pp. 180–196. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88081-1_14
Sweller, J.: Cognitive load during problem solving: effects on learning. Cogn. Sci. 12(1), 257–285 (1988). https://doi.org/10.1016/0364-0213(88)90023-7
Sweller, J.: Cognitive load theory, learning difficulty, and instructional design. Learn. Instr. 4(4), 295–312 (1994). https://doi.org/10.1016/0959-4752(94)90003-5
Young, J.Q., Van Merrienboer, J., Durning, S., Ten Cate, O.: Cognitive Load Theory: Implications for medical education: AMEE Guide No. 86. Med. Teach. 36(5), 371–384 (2014). https://doi.org/10.3109/0142159X.2014.889290
McLeod, S.A.: Multi store model of memory. Simply Psychology (2017). https://www.simplypsychology.org/multi-store.html
Sweller, J., Ayres, P., Kalyuga, S.: Cognitive Load Theory. Explorations in the Learning Sciences, Instructional Systems and Performance Technologies, vol. 1. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-8126-4
Geary, D.: An evolutionarily informed education science. Educ. Psychol. 43(4), 179–195 (2008). https://doi.org/10.1080/00461520802392133
Orru, G., Longo, L.: The evolution of cognitive load theory and the measurement of its intrinsic, extraneous and germane loads: a review. In: Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2018. CCIS, vol. 1012, pp. 23–48. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14273-5_3
Sweller, J., van Merriënboer, J.J.G., Paas, F.: Cognitive architecture and instructional design: 20 years later. Educ. Psychol. Rev. 31(2), 261–292 (2019). https://doi.org/10.1007/s10648-019-09465-5
Paas, F., Tuovinen, J., Tabbers, H., Van Gerven, P.: Cognitive load measurement as a means to advance cognitive load theory. Educ. Psychol. 38(1), 63–71 (2003)
Paas, F.: Training strategies for attaining transfer of problem solving skills in statistics: a cognitive load approach. J. Educ. Psychol. 84, 429–434 (1992)
Rubio, S., Diaz, E., Martin, J., Puente, J.M.: Evaluation of subjective mental workload: a comparison of SWAT, NASA-TLX, and workload profile methods. Appl. Psychol. 53(1), 61–86 (2004). https://doi.org/10.1111/j.1464-0597.2004.00161
Gibson, A., et al.: Assessing usability testing for people living with dementia. In: REHAB 2016: Proceedings of the 4th Workshop on ICTs for improving Patients Rehabilitation Research Techniques, pp. 25–31 (2016). https://doi.org/10.1145/3051488.3051492
Chen, F., et al.: Robust Multimodal Cognitive Load Measurement. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31700-7
Zyma, I., et al.: Electroencephalograms during mental arithmetic task performance. Data 4(1), 2–7 (2019). https://doi.org/10.3390/data4010014
Nourbakhsh, N., Chen, F., Wang, Y., Calvo, R.A.: Detecting users’ cognitive load by galvanic skin response with affective interference. ACM Trans. Interact. Intell. Syst. 7(3), 1–12 (2017). https://doi.org/10.1145/2960413. Article 12
Nourbakhsh, N., Wang, Y., Chen, F.: GSR and blink features for cognitive load classification. In: Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler, M. (eds.) INTERACT 2013. LNCS, vol. 8117, pp. 159–166. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40483-2_11
Rai, A.A., Ahirwal, M.K.: Electroencephalogram-based cognitive load classification during mental arithmetic task. In: Patgiri, R., Bandyopadhyay, S., Borah, M.D., Emilia Balas, V. (eds.) Edge Analytics. LNEE, vol. 869, pp. 479–487. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-0019-8_36
Kievit, R.A., et al.: Mutualistic coupling between vocabulary and reasoning supports cognitive development during late adolescence and early adulthood. Psychol. Sci. 28(10), 1419–1431 (2017). https://doi.org/10.1177/0956797617710785
Harrison, T.L., Shipstead, Z., Engle, R.W.: Why is working memory capacity related to matrix reasoning tasks? Mem. Cogn. 43(3), 389–396 (2014). https://doi.org/10.3758/s13421-014-0473-3
Hirachan, N., Mathews, A., Romero, J., Rojas, R.F.: Measuring cognitive workload using multimodal sensors, pp. 2–5 (2022). http://arxiv.org/abs/2205.04235
Chierchia, G., Fuhrmann, D., Knoll, L.J., Pi-Sunyer, B.P., Sakhardande, A.L., Blakemore, S.J.: The matrix reasoning item bank (MaRs-IB): novel, open-access abstract reasoning items for adolescents and adults. Roy. Soc. Open Sci. 6(10), 1–13 (2019). https://doi.org/10.1098/rsos.190232
Braithwaite, J., Watson, D., Jones, R., Rowe, M.: A guide for analysing electrodermal activity (EDA) skin conductance responses (SCRs) for psychological experiments. Technical report, 2nd version. University of Birmingham, UK (2015)
Farnsworth, B.: What is GSR (galvanic skin response) and how does it work? (2018) https://imotions.com/blog/gsr/
Yoshihiro, S., Takumi, Y., Koji, S., Akinori, H., Koichi, I., Tetsuo, K.: Use of frequency domain analysis of skin conductance for evaluation of mental workload. J. Physiol. Anthropol. 27(4), 173–177 (2008)
Shi, Y., Ruiz, N., Taib, R., Choi, E., Chen, F.: Galvanic skin response (GSR) as an index of cognitive load. In: CHI 2007 Extended Abstracts on Human Factors in Computing Systems, pp. 2651–2656 (2007). https://doi.org/10.1145/1240866.1241057
Nourbakhsh, N., Wang, Y., Chen, F., Calvo, R.: Using galvanic skin response for cognitive load measurement in arithmetic and reading tasks. In: 24th Australian Computer-Human Interaction Conference (OzCHI), Melbourne, Australia, pp. 420–423. ACM Press (2012). https://doi.org/10.1145/2414536.2414602
Sinharay, A., Chatterjee, D., Sinha, A.: Evaluation of different onscreen keyboard layouts using EEG signals. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 480–486 (2013). https://doi.org/10.1109/SMC.2013.88
GSR R-Notebooks: Processing in iMotions and algorithms used (Latest Version) (2021). https://help.imotions.com/hc/en-us/articles/360010312220-GSR-R-Notebooks-Processing-in-iMotions-and-algorithms-used-Latest-Version. Accessed 6 Jan 2021
R Notebooks (EDA): GSR Epoching (2021). https://help.imotions.com/hc/en-us/articles/360013685940-R-Notebooks-EDA-GSR-Epoching. Accessed 6 Jan 2021
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zihisire Muke, P., Telec, Z., Trawiński, B. (2022). Cognitive Load Measurement Using Arithmetic and Graphical Tasks and Galvanic Skin Response. In: Nguyen, N.T., Manolopoulos, Y., Chbeir, R., Kozierkiewicz, A., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2022. Lecture Notes in Computer Science(), vol 13501. Springer, Cham. https://doi.org/10.1007/978-3-031-16014-1_66
Download citation
DOI: https://doi.org/10.1007/978-3-031-16014-1_66
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16013-4
Online ISBN: 978-3-031-16014-1
eBook Packages: Computer ScienceComputer Science (R0)