Cognitive Load Measurement Using Arithmetic and Graphical Tasks and Galvanic Skin Response | SpringerLink
Skip to main content

Cognitive Load Measurement Using Arithmetic and Graphical Tasks and Galvanic Skin Response

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2022)

Abstract

The results of an experiment to measure cognitive load using arithmetic and graphical tasks and galvanic skin response (GSR) biometric technique are presented in this paper. 62 volunteers were recruited to take part in a laboratory experiment conducted with the integrated iMotions biometric platform. Data were collected using observations, Single Ease Question (SEQ) and NASA Task Load Index (NASA-TLX) self-report questionnaires, and GSR measurements. The 18 performance, subjective, and psychophysiological indicators were calculated from the collected data to measure the cognitive load associated with arithmetic and graphical tasks. Nonparametric tests of statistical significance of differences between individual metrics were made for the easy, medium, and hard arithmetic and graphical tasks. The conducted research proved the usefulness of most measures in the analysis of the cognitive load associated with arithmetic and graphical tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Van Gog, T., Paas, F.: Cognitive load measurement. In: Seel, N.M. (ed.) Encyclopedia of the Sciences of Learning. Springer, Boston (2012). https://doi.org/10.1007/978-1-4419-1428-6_412

    Chapter  Google Scholar 

  2. Kumar, N., Kumar, J.: Measurement of cognitive load in HCI systems using EEG power spectrum: an experimental study. Procedia Comput. Sci. 84, 70–78 (2016). https://doi.org/10.1016/j.procs.2016.04.068

    Article  Google Scholar 

  3. Zihisire Muke, P., Trawinski, B.: Concept of research into cognitive load in human-computer interaction using biometric techniques. In: Proceedings of the PP-RAI 2019 Conference, Wrocław, Poland, pp. 78–83 (2019). http://pp-rai.pwr.edu.pl/PPRAI19_proceedings.pdf. Accessed 01 June 2022

  4. iMotions Biometric Research Platform (8.1): iMotions A/S, Copenhagen, Denmark (2020)

    Google Scholar 

  5. Bresso, P.: Study of the impact of various stimuli on human cognitive load using electroencephalography and other biometric techniques. Master’s thesis, Wroclaw University of Science and Technology, Wrocław (2020)

    Google Scholar 

  6. Desai, H.: Study of the impact of various stimuli on human cognitive load using eye tracking and other biometric techniques. Master’s thesis, Wroclaw University of Science and Technology, Wrocław (2021)

    Google Scholar 

  7. Maharani, P.A.: Study of the impact of various stimuli on human cognitive load using facial expression analysis and other biometric techniques. Master’s thesis, Wroclaw University of Science and Technology, Wrocław (2020)

    Google Scholar 

  8. Zihisire Muke, P., Piwowarczyk, M., Telec, Z., Trawiński, B., Maharani, P.A., Bresso, P.: Impact of the Stroop effect on cognitive load using subjective and psychophysiological measures. In: Nguyen, N.T., Iliadis, L., Maglogiannis, I., Trawiński, B. (eds.) ICCCI 2021. LNCS (LNAI), vol. 12876, pp. 180–196. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88081-1_14

    Chapter  Google Scholar 

  9. Sweller, J.: Cognitive load during problem solving: effects on learning. Cogn. Sci. 12(1), 257–285 (1988). https://doi.org/10.1016/0364-0213(88)90023-7

    Article  Google Scholar 

  10. Sweller, J.: Cognitive load theory, learning difficulty, and instructional design. Learn. Instr. 4(4), 295–312 (1994). https://doi.org/10.1016/0959-4752(94)90003-5

    Article  Google Scholar 

  11. Young, J.Q., Van Merrienboer, J., Durning, S., Ten Cate, O.: Cognitive Load Theory: Implications for medical education: AMEE Guide No. 86. Med. Teach. 36(5), 371–384 (2014). https://doi.org/10.3109/0142159X.2014.889290

  12. McLeod, S.A.: Multi store model of memory. Simply Psychology (2017). https://www.simplypsychology.org/multi-store.html

  13. Sweller, J., Ayres, P., Kalyuga, S.: Cognitive Load Theory. Explorations in the Learning Sciences, Instructional Systems and Performance Technologies, vol. 1. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-8126-4

    Book  Google Scholar 

  14. Geary, D.: An evolutionarily informed education science. Educ. Psychol. 43(4), 179–195 (2008). https://doi.org/10.1080/00461520802392133

    Article  Google Scholar 

  15. Orru, G., Longo, L.: The evolution of cognitive load theory and the measurement of its intrinsic, extraneous and germane loads: a review. In: Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2018. CCIS, vol. 1012, pp. 23–48. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14273-5_3

    Chapter  Google Scholar 

  16. Sweller, J., van Merriënboer, J.J.G., Paas, F.: Cognitive architecture and instructional design: 20 years later. Educ. Psychol. Rev. 31(2), 261–292 (2019). https://doi.org/10.1007/s10648-019-09465-5

    Article  Google Scholar 

  17. Paas, F., Tuovinen, J., Tabbers, H., Van Gerven, P.: Cognitive load measurement as a means to advance cognitive load theory. Educ. Psychol. 38(1), 63–71 (2003)

    Article  Google Scholar 

  18. Paas, F.: Training strategies for attaining transfer of problem solving skills in statistics: a cognitive load approach. J. Educ. Psychol. 84, 429–434 (1992)

    Article  Google Scholar 

  19. Rubio, S., Diaz, E., Martin, J., Puente, J.M.: Evaluation of subjective mental workload: a comparison of SWAT, NASA-TLX, and workload profile methods. Appl. Psychol. 53(1), 61–86 (2004). https://doi.org/10.1111/j.1464-0597.2004.00161

    Article  Google Scholar 

  20. Gibson, A., et al.: Assessing usability testing for people living with dementia. In: REHAB 2016: Proceedings of the 4th Workshop on ICTs for improving Patients Rehabilitation Research Techniques, pp. 25–31 (2016). https://doi.org/10.1145/3051488.3051492

  21. Chen, F., et al.: Robust Multimodal Cognitive Load Measurement. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31700-7

    Book  Google Scholar 

  22. Zyma, I., et al.: Electroencephalograms during mental arithmetic task performance. Data 4(1), 2–7 (2019). https://doi.org/10.3390/data4010014

    Article  Google Scholar 

  23. Nourbakhsh, N., Chen, F., Wang, Y., Calvo, R.A.: Detecting users’ cognitive load by galvanic skin response with affective interference. ACM Trans. Interact. Intell. Syst. 7(3), 1–12 (2017). https://doi.org/10.1145/2960413. Article 12

  24. Nourbakhsh, N., Wang, Y., Chen, F.: GSR and blink features for cognitive load classification. In: Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler, M. (eds.) INTERACT 2013. LNCS, vol. 8117, pp. 159–166. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40483-2_11

    Chapter  Google Scholar 

  25. Rai, A.A., Ahirwal, M.K.: Electroencephalogram-based cognitive load classification during mental arithmetic task. In: Patgiri, R., Bandyopadhyay, S., Borah, M.D., Emilia Balas, V. (eds.) Edge Analytics. LNEE, vol. 869, pp. 479–487. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-0019-8_36

    Chapter  Google Scholar 

  26. Kievit, R.A., et al.: Mutualistic coupling between vocabulary and reasoning supports cognitive development during late adolescence and early adulthood. Psychol. Sci. 28(10), 1419–1431 (2017). https://doi.org/10.1177/0956797617710785

    Article  Google Scholar 

  27. Harrison, T.L., Shipstead, Z., Engle, R.W.: Why is working memory capacity related to matrix reasoning tasks? Mem. Cogn. 43(3), 389–396 (2014). https://doi.org/10.3758/s13421-014-0473-3

    Article  Google Scholar 

  28. Hirachan, N., Mathews, A., Romero, J., Rojas, R.F.: Measuring cognitive workload using multimodal sensors, pp. 2–5 (2022). http://arxiv.org/abs/2205.04235

  29. Chierchia, G., Fuhrmann, D., Knoll, L.J., Pi-Sunyer, B.P., Sakhardande, A.L., Blakemore, S.J.: The matrix reasoning item bank (MaRs-IB): novel, open-access abstract reasoning items for adolescents and adults. Roy. Soc. Open Sci. 6(10), 1–13 (2019). https://doi.org/10.1098/rsos.190232

    Article  Google Scholar 

  30. Braithwaite, J., Watson, D., Jones, R., Rowe, M.: A guide for analysing electrodermal activity (EDA) skin conductance responses (SCRs) for psychological experiments. Technical report, 2nd version. University of Birmingham, UK (2015)

    Google Scholar 

  31. Farnsworth, B.: What is GSR (galvanic skin response) and how does it work? (2018) https://imotions.com/blog/gsr/

  32. Yoshihiro, S., Takumi, Y., Koji, S., Akinori, H., Koichi, I., Tetsuo, K.: Use of frequency domain analysis of skin conductance for evaluation of mental workload. J. Physiol. Anthropol. 27(4), 173–177 (2008)

    Article  Google Scholar 

  33. Shi, Y., Ruiz, N., Taib, R., Choi, E., Chen, F.: Galvanic skin response (GSR) as an index of cognitive load. In: CHI 2007 Extended Abstracts on Human Factors in Computing Systems, pp. 2651–2656 (2007). https://doi.org/10.1145/1240866.1241057

  34. Nourbakhsh, N., Wang, Y., Chen, F., Calvo, R.: Using galvanic skin response for cognitive load measurement in arithmetic and reading tasks. In: 24th Australian Computer-Human Interaction Conference (OzCHI), Melbourne, Australia, pp. 420–423. ACM Press (2012). https://doi.org/10.1145/2414536.2414602

  35. Sinharay, A., Chatterjee, D., Sinha, A.: Evaluation of different onscreen keyboard layouts using EEG signals. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 480–486 (2013). https://doi.org/10.1109/SMC.2013.88

  36. GSR R-Notebooks: Processing in iMotions and algorithms used (Latest Version) (2021). https://help.imotions.com/hc/en-us/articles/360010312220-GSR-R-Notebooks-Processing-in-iMotions-and-algorithms-used-Latest-Version. Accessed 6 Jan 2021

  37. R Notebooks (EDA): GSR Epoching (2021). https://help.imotions.com/hc/en-us/articles/360013685940-R-Notebooks-EDA-GSR-Epoching. Accessed 6 Jan 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Trawiński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zihisire Muke, P., Telec, Z., Trawiński, B. (2022). Cognitive Load Measurement Using Arithmetic and Graphical Tasks and Galvanic Skin Response. In: Nguyen, N.T., Manolopoulos, Y., Chbeir, R., Kozierkiewicz, A., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2022. Lecture Notes in Computer Science(), vol 13501. Springer, Cham. https://doi.org/10.1007/978-3-031-16014-1_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16014-1_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16013-4

  • Online ISBN: 978-3-031-16014-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics